Logo - springer
Slogan - springer

Mathematics - Algebra | Übungsbuch zur Linearen Algebra - Aufgaben und Lösungen

Übungsbuch zur Linearen Algebra

Aufgaben und Lösungen

Stoppel, Hannes, Griese, Birgit

4., durchges. Aufl. 2003, X, 286S.

eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

(net) Preis für USA

ISBN 978-3-322-94287-6

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

$49.95
  • Übungsbuch zu Fischer: Lineare Algebra
Dieses Buch ist als Ergänzung zu dem Buch Lineare Algebra von Gerd Fischer (vieweg studium) gedacht. Die Lösungen zu den einzelnen Aufgaben, die aus dem Lehrbuch stammen, sind sehr ausführlich dargestellt.
Das Buch unterstützt Studierende der Mathematik, Physik oder verwandter Wissenschaften bei der Vor- und Nachbereitung von Vorlesungen und Prüfungen zur Linearen Algebra. Durch seine reichhaltige Zusammenstellung von Aufgaben und (kommentierten) Lösungen stellt es auch eine unentbehrliche Fundgrube für Lehrende dar, sei es an der Schule oder Hochschule.

Content Level » Upper undergraduate

Stichwörter » Algebra - Determinanten - Dualität - Eigenwert - Eigenwerte - Tensorprodukte - Vektorräume - lineare - lineare Abbildung - lineare Algebra - lineare Gleichungssysteme

Verwandte Fachbereiche » Algebra

Inhaltsverzeichnis 

I Aufgaben.- 0 Lineare Gleichungssysteme.- 0.3 Ebenen und Geraden im Standardraum ?3.- 0.4 Das Eliminationsverfahren von Gauss.- 1 Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Ringe, Körper und Polynome.- 1.4 Vektorräume.- 1.5 Basis und Dimension.- 1.6 Summen von Vektorräumen*.- 2 Lineare Abbildungen.- 2.1 Beispiele und Definitionen.- 2.2 Bild, Fasern und Kern, Quotientenvektorräume*.- 2.3 Lineare Gleichungssysteme.- 2.4 Lineare Abbildungen und Matrizen.- 2.5 Multiplikation von Matrizen.- 2.6 Koordinatentransformationen.- 2.7 Elementarmatrizen und Matrizenumformungen.- 3 Determinanten.- 3.1 Beispiele und Definitionen.- 3.2 Existenz und Eindeutigkeit.- 3.3 Minoren*.- 3.4 Determinante eines Endomorphismus und Orientierung*.- 4 Eigenwerte.- 4.1 Beispiele und Definitionen.- 4.2 Das charakteristische Polynom.- 4.3 Diagonalisierung.- 4.4 Trigonalisierung*.- 4.5 Potenzen eines Endomorphismus*.- 4.6 Die Jordansche Normalform*.- 5 Euklidische und unitäre Vektorräume.- 5.1 Das kanonische Skalarprodukt im ?n.- 5.2 Das Vektorprodukt im ?3.- 5.3 Das kanonische Skalarprodukt im ?n.- 5.4 Bilinearformen und Sesquilinearformen.- 5.5 Orthogonale und unitäre Endomorphismen.- 5.6 Selbstadjungierte Endomorphismen*.- 5.7 Hauptachsentransformation*.- 6 Dualität*.- 6.1 Dualräume.- 6.2 Dualität und Skalarprodukte.- 6.3 Tensorprodukte*.- 6.4 Multilineare Algebra*.- II Lösungen.- 0 Lineare Gleichungssysteme.- 0.3 Ebenen und Geraden im Standardraum ?3.- 0.4 Das Eliminationsverfahren von Gauss.- 1 Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Ringe, Körper und Polynome.- 1.4 Vektorräume.- 1.5 Basis und Dimension.- 1.6 Summen von Vektorräumen*.- 2 Lineare Abbildungen.- 2.1 Beispiele und Definitionen.- 2.2 Bild, Fasern und Kern, Quotientenvektorräume*.- 2.3 Lineare Gleichungssysteme.- 2.4 Lineare Abbildungen und Matrizen.- 2.5 Multiplikation von Matrizen.- 2.6 Koordinatentransformationen.- 2.7 Elementarmatrizen und Matrizenumformungen.- 3 Determinanten.- 3.1 Beispiele und Definitionen.- 3.2 Existenz und Eindeutigkeit.- 3.3 Minoren*.- 3.4 Determinante eines Endomorphismus und Orientierung*.- 4 Eigenwerte.- 4.1 Beispiele und Definitionen.- 4.2 Das charakteristische Polynom.- 4.3 Diagonalisierung.- 4.4 Trigonalisierung*.- 4.5 Potenzen eines Endomorphismus*.- 4.6 Die Jordansche Normalform*.- 5 Euklidische und unitäre Vektorräume.- 5.1 Das kanonische Skalarprodukt im ?n.- 5.2 Das Vektorprodukt im ?3.- 5.3 Das kanonische Skalarprodukt im ?n.- 5.4 Bilinearformen und Sesquilinearformen.- 5.5 Orthogonale und unitäre Endomorphismen.- 5.6 Selbstadjungierte Endomorphismen*.- 5.7 Hauptachsentransformation*.- 6 Dualität*.- 6.1 Dualräume.- 6.2 Dualität und Skalarprodukte.- 6.3 Tensorprodukte*.- 6.4 Multilineare Algebra.- Symbolverzeichnis.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Lineare und Multilineare Algebra, Matrizentheorie.