Logo - springer
Slogan - springer

Mathematics - Algebra | Lineare Algebra - Eine Einführung für Studienanfänger

Lineare Algebra

Eine Einführung für Studienanfänger

Fischer, Gerd

13., durchges. Aufl. 2002, X, 384S.

eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

(net) Preis für USA

ISBN 978-3-322-91933-5

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

$49.95
  • Fischer: Lineare Algebra nun in der 13. Auflage
Dieses seit über 25 Jahren bewährte, einführende Lehrbuch eignet sich als Grundlage für eine zweisemestrige Vorlesung für Studenten der Mathematik, Physik und Informatik. Für einen schnellen und leichteren Einstieg ist das Buch ebenfalls zu verwenden, indem die markierten Abschnitte weggelassen werden. Zentrale Themen sind: Lineare Gleichungssysteme, Eigenwerte und Skalarprodukte. Besonderer Wert wird darauf gelegt, Begriffe zu motivieren, durch Beispiele und durch Bilder zu illustrieren und konkrete Rechenverfahren für die Praxis abzuleiten. Der Text enthält zahlreiche Übungsaufgaben. Lösungen dazu findet man in dem von H. Stoppel und B. Griese verfassten "Übungsbuch" (vieweg studium, Bd. 88)

Content Level » Upper undergraduate

Stichwörter » Algebra - Determinanten - Eigenwert - Vektorräume - lineare Abbildung - lineare Algebra - lineare Gleichungssysteme

Verwandte Fachbereiche » Algebra

Inhaltsverzeichnis 

0 Lineare Gleichungssysteme.- 0.1 Der reelle n-dimensionale Raum.- 0.2 Geraden in der Ebene.- 0.3 Ebenen und Geraden im Standardraum ?3.- 0.4 Das Eliminationsverfahren von GAUSS.- 1 Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Ringe, Körper und Polynome.- 1.4 Vektorräume t1.- 1.6 Summen von Vektorräumen*.- 2 Lineare Abbildungen.- 2.1 Beispiele und Definitionen.- 2.2 Bild, Fasern und Kern, Quotientenvektorräume*.- 2.3 Lineare Gleichungssysteme.- 2.4 Lineare Abbildungen und Matrizen.- 2.5 Multiplikation von Matrizen.- 2.6 Koordinatentransformationen.- 2.7 Elementarmatrizen und Matrizenumformungen.- 3 Determinanten.- 3.1 Beispiele und Definitionen.- 3.2 Existenz und Eindeutigkeit.- 3.3 Minoren*.- 3.4 Determinante eines Endomorphismus und Orientierung*.- 4 Eigenwerte.- 4.1 Beispiele und Definitionen.- 4.2 Das charakteristische Polynom.- 4.3 Diagonalisierung.- 4.4 Trigonalisierung*.- 4.5 Potenzen eines Endomorphismus*.- 4.6 Die Jordansche Normalform*.- 5 Euklidische und unitäre Vektorräume.- 5.1 Das kanonische Skalarprodukt im ?n.- 5.2 Das Vektorprodukt im ?3.- 5.3 Das kanonische Skalarprodukt im ?n.- 5.4 Bilinearformen und Sesquilinearformen.- 5.5 Orthogonale und unitäre Endomorphismen.- 5.6 Selbstadjungierte Endomorphismen*.- 5.7 Hauptachsentransformation*.- 6 Dualität und Tensorprodukte*.- 6.1 Dualräume.- 6.2 Dualität und Skalarprodukte.- 6.3 Tensorprodukte.- 6.4 Multilineare Algebra.- Namensverzeichnis.- Sachwortverzeichnis.- Symbolverzeichnis.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Lineare und Multilineare Algebra, Matrizentheorie.