Logo - springer
Slogan - springer

Mathematics - Algebra | Automorphisms in Birational and Affine Geometry - Levico Terme, Italy, October 2012

Automorphisms in Birational and Affine Geometry

Levico Terme, Italy, October 2012

Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y.G., Zaidenberg, M. (Eds.)

2014, IX, 518 p. 21 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-319-05681-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-319-05680-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Presents original research and valuable overview on topics such as Cremona groups, birational rigidity, dynamics of automorphisms, and algebraic group actions 
  • Features articles by leading specialists in the field
  • Compares and contrasts different views on the problem ​of describing the automorphism groups of affine and projective varieties

The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics.

Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference highlighted the close connections between the above-mentioned areas and promoted the exchange of knowledge and methods from adjacent fields.

Content Level » Graduate

Keywords » 14L30, 14E07, 14R20, 14R10, 32M17 - Cremona group - affine geometry - automorphism group - dynamics of automorphisms - projective geometry

Related subjects » Algebra

Table of contents 

Preface.- Part I Birational automorphisms.- H. Ahmadinezhad: Singular del Pezzo fibrations and birational rigidity.- I. Arzhantsev, A. Popovskiy: Additive actions on projective hypersurfaces.- J. Blanc, F. Mangolte: Cremona groups of real surfaces.- M. Brion: On automorphisms and endomorphisms of projective varieties.- I. Cheltsov: Del Pezzo surfaces and local inequalities.- T. de Fernex: Fano hypersurfaces and their birational geometry.- T. Eckl, A. Pukhlikov: On the locus of non-rigid hypersurfaces.- S. Lamy: On the genus of birational maps between 3-folds.- A. Massarenti, M. Mella: On the automorphisms of moduli spaces of curves.- P. Mondal: Normal analytic compacti fications of C^2.- V. L. Popov: Jordan groups and automorphism groups of algebraic varieties.- Yu. Prokhorov: 2-elementary subgroups of the space Cremona group.- D.-Q. Zhang: Birational automorphism groups of projective varieties of Picard number two.- Part II Automorphisms of a fine varieties.- A. Assi: Rational curves with one place at in finity.- A. Belov, L. Bokut, L. Rowen, Y. Jietai: The Jacobian Conjecture, together with Specht and Burnside-type problems.- A. Dubouloz, D. R. Finston, I. Jaradat: Equivariant triviality of quasi-monomial triangular G_a-actions on A^4.- A. Dubouloz, L. Moser-Jauslin, P.-M. Poloni: Automorphism groups of certain rational hypersurfaces in complex four-space.- G. Freudenburg: Laurent cancellation for rings of transcendence degree one over a field.- R. V. Gurjar, K. Masuda, M. Miyanishi: Deformations of A^1- fibrations.- T. Kishimoto: Remark on deformations of a fine surfaces with A1- fibrations.- S. Kuroda: How to prove the wildness of polynomial automorphisms, an example.- F. Kutzschebauch: Flexibility properties in complex analysis and a fine algebraic geometry.- A. Lewis: Strongly residual coordinates over C_[x].- V. Lin, M. Zaidenberg: Con figuration spaces of the a fine line and their automorphism groups.- L. Makar-Limanov: On the Newton polygon of a Jacobian mate.- S. Maubach, R. Willems: Keller maps of low degree over finite fields.- P. Russell: Cancellation.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Algebraic Geometry.