Logo - springer
Slogan - springer

Mathematics - Algebra | Introduction to Lie Algebras

Introduction to Lie Algebras

Erdmann, K., Wildon, Mark J.

2006, X, 251 p. 36 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-84628-490-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-84628-040-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right.

Based on a lecture course given to fourth-year undergraduates, this book provides an elementary introduction to Lie algebras. It starts with basic concepts. A section on low-dimensional Lie algebras provides readers with experience of some useful examples. This is followed by a discussion of solvable Lie algebras and a strategy towards a classification of finite-dimensional complex Lie algebras. The next chapters cover Engel's theorem, Lie's theorem and Cartan's criteria and introduce some representation theory. The root-space decomposition of a semisimple Lie algebra is discussed, and the classical Lie algebras studied in detail. The authors also classify root systems, and give an outline of Serre's construction of complex semisimple Lie algebras. An overview of further directions then concludes the book and shows the high degree to which Lie algebras influence present-day mathematics.

The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions.

Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Content Level » Lower undergraduate

Keywords » Dynkin diagrams - Lie Algebras - Root systems - Theoretical physics - algebra - homomorphism

Related subjects » Algebra - Theoretical, Mathematical & Computational Physics

Table of contents / Errata 

Ideals and Homomorphisms.- Low-Dimensional Lie Algebras.- Solvable Lie Algebras and a Rough Classification.- Subalgebras of gl(V).- Engel’s Theorem and Lie’s Theorem.- Some Representation Theory.- Representations of sl(2, C).- Cartan’s Criteria.- The Root Space Decomposition.- Root Systems.- The Classical Lie Algebras.- The Classification of Root Systems.- Simple Lie Algebras.- Further Directions.- Appendix A: Linear Algebra.- Appendix B: Weyl’s Theorem.- Appendix C: Cartan Subalgebras.- Appendix D: Weyl Groups.- Appendix E: Answers to Selected Exercises.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Algebra.