Logo - springer
Slogan - springer

Mathematics - Algebra | A Polynomial Approach to Linear Algebra (Reviews)

A Polynomial Approach to Linear Algebra

Series: Universitext

Fuhrmann, Paul A.

2nd ed. 2012, XVI, 411p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-0338-8

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-0337-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

From the reviews of the second edition:

“This interesting and unusual text shows that the connections between linear algebra and polynomials go far deeper than this. … This is certainly a linear algebra text with a distinct personality all its own. … it can be used with profit by people interested in the special topics at the end … or by good students in a graduate linear algebra course with a solid background in abstract algebra who are interested in learning the material in a rather nonstandard way.” (Mark Hunacek, The Mathematical Association of America, May, 2012)



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Linear and Multilinear Algebras, Matrix Theory.