Series: Universitext
Bapat, Ravindra B.
Jointly published with Hindustan Book Agency, New Delhi, India. Originally published by Hindustan Book Agency, New Delhi, India
3rd ed. 2012, VIII, 167 p. 1 illus.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4471-2739-0
digitally watermarked, no DRM
Included Format: PDF and EPUB
download immediately after purchase
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4471-2738-3
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariate normal distribution and distribution of quadratic forms are included.
For this third edition, the material has been reorganised to develop the linear algebra in the first six chapters, to serve as a first course on linear algebra that is especially suitable for students of statistics or for those looking for a matrix theoretic approach to the subject. Other key features include:
• coverage of topics such as rank additivity, inequalities for eigenvalues and singular values;
• a new chapter on linear mixed models;
• over seventy additional problems on rank: the matrix rank is an important and rich topic with connections to many aspects of linear algebra such as generalized inverses, idempotent matrices and partitioned matrices.
This text is aimed primarily at advanced undergraduate and first-year graduate students taking courses in linear algebra, linear models, multivariate analysis and design of experiments. A wealth of exercises, complete with hints and solutions, help to consolidate understanding. Researchers in mathematics and statistics will also find the book a useful source of results and problems.
Content Level » Graduate
Keywords » linear algebra - linear model - mixed effects model - normal equations - variance components - variance-covariance matrix
Related subjects » Algebra - Business, Economics & Finance - Statistical Theory and Methods
Get alerted on new Springer publications in the subject area of Linear and Multilinear Algebras, Matrix Theory.