Logo - springer
Slogan - springer

Mathematics - Algebra | Monomial Ideals

Monomial Ideals

Series: Graduate Texts in Mathematics, Vol. 260

Herzog, Jürgen, Hibi, Takayuki

2011, XVI, 305 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.95

(net) price for USA

ISBN 978-0-85729-106-6

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$74.95

(net) price for USA

ISBN 978-0-85729-105-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$74.95

(net) price for USA

ISBN 978-1-4471-2594-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • -Theory is complemented by examples and exercises, bringing the reader to a deeper understanding of explored concepts
  • - A useful introduction to the fields of combinatorial and computational commutative algebra, with a special focus on monomial ideals
  • - Only a basic knowledge of commutative algebra is required

This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals.

Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part I offers a quick introduction to the modern theory of Gröbner bases as well as the detailed study of generic initial ideals. Part II supplies Hilbert functions and resolutions and some of the combinatorics related to monomial ideals including the Kruskal—Katona theorem and algebraic aspects of Alexander duality. Part III discusses combinatorial applications of monomial ideals, providing a valuable overview of some of the central trends in algebraic combinatorics.

Main subjects include edge ideals of finite graphs, powers of ideals, algebraic shifting theory and an introduction to discrete polymatroids. Theory is complemented by a number of examples and exercises throughout, bringing the reader to a deeper understanding of concepts explored within the text.

Self-contained and concise, this book will appeal to a wide range of readers, including PhD students on advanced courses, experienced researchers, and combinatorialists and non-specialists with a basic knowledge of commutative algebra.

Since their first meeting in 1985, Juergen Herzog (Universität Duisburg-Essen, Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on a number of research projects, of which recent results are presented in this monograph.

Content Level » Graduate

Keywords » Alexander duality - Gröbner basis - Hilbert function - algebraic shifting - generic initial ideal - graded Betti number - minimal free resolution - simplicial complex

Related subjects » Algebra

Table of contents 

Part I Gröbner bases: Monomial Ideals.- A short introduction to Gröbner bases.- Monomial orders and weights.- Generic initial ideals.- The exterior algebra.- Part II: Hilbert functions and resolutions.- Hilbert functions and the theorems of Macaulay and Kruskal-Katona.- Resolutions of monomial ideals and the Eliahou-Kervaire formula.- Alexander duality and resolutions.- Part III Combinatorics: Alexander duality and finite graphs.- Powers of monomial ideals.- Shifting theory.- Discrete Polymatroids.- Some homological algebra.- Geometry

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Commutative Rings and Algebras.