Logo - springer
Slogan - springer

Mathematics - Algebra | Advanced Topics in the Arithmetic of Elliptic Curves

Advanced Topics in the Arithmetic of Elliptic Curves

Silverman, Joseph H.

1994, XIII, 528 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4612-0851-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-387-94328-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • About this textbook

In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.

Content Level » Graduate

Keywords » Elliptic Curve

Related subjects » Algebra - Number Theory and Discrete Mathematics

Table of contents 

1.- I Elliptic and Modular Functions.- §1. The Modular Group.- §2. The Modular Curve X(1).- §3. Modular Functions.- §4. Uniformization and Fields of Moduli.- §5. Elliptic Functions Revisited.- §6. q-Expansions of Elliptic Functions.- §7. q-Expansions of Modular Functions.- §8. Jacobi’s Product Formula for ?(?).- §9. Hecke Operators.- §10. Hecke Operators Acting on Modular Forms.- §11. L-Series Attached to Modular Forms.- Exercises.- II Complex Multiplication.- §1. Complex Multiplication over C.- §2. Rationality Questions.- §3. Class Field Theory — A Brief Review.- §4. The Hilbert Class Field.- §5. The Maximal Abelian Extension.- §6. Integrality of j.- §7. Cyclotomic Class Field Theory.- §8. The Main Theorem of Complex Multiplication.- §9. The Associated Grössencharacter.- §10. The L-Series Attached to a CM Elliptic Curve.- Exercises.- III Elliptic Surfaces.- §1. Elliptic Curves over Function Fields.- §2. The Weak Mordell-Weil Theorem.- §3. Elliptic Surfaces.- §4. Heights on Elliptic Curves over Function Fields.- §5. Split Elliptic Surfaces and Sets of Bounded Height.- §6. The Mordell-Weil Theorem for Function Fields.- §7. The Geometry of Algebraic Surfaces.- §8. The Geometry of Fibered Surfaces.- §9. The Geometry of Elliptic Surfaces.- §10. Heights and Divisors on Varieties.- §11. Specialization Theorems for Elliptic Surfaces.- §12. Integral Points on Elliptic Curves over Function Fields.- Exercises.- IV The Néron Model.- §1. Group Varieties.- §2. Schemes and S-Schemes.- §3. Group Schemes.- §4. Arithmetic Surfaces.- §5. Néron Models.- §6. Existence of Néron Models.- §7. Intersection Theory, Minimal Models, and Blowing-Up.- §8. The Special Fiber of a Néron Model.- §9. Tate’s Algorithm to Compute the Special Fiber.- §10. The Conductor of an Elliptic Curve.- §11. Ogg’s Formula.- Exercises.- V Elliptic Curves over Complete Fields.- §1. Elliptic Curves over ?.- §2. Elliptic Curves over ?.- §3. The Tate Curve.- §4. The Tate Map Is Surjective.- §5. Elliptic Curves over p-adic Fields.- §6. Some Applications of p-adic Uniformization.- Exercises.- VI Local Height Functions.- §1. Existence of Local Height Functions.- §2. Local Decomposition of the Canonical Height.- §3. Archimedean Absolute Values — Explicit Formulas.- §4. Non-Archimedean Absolute Values — Explicit Formulas.- Exercises.- Appendix A Some Useful Tables.- §3. Elliptic Curves over ? with Complex Multiplication.- Notes on Exercises.- References.- List of Notation.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Algebraic Geometry.