Logo - springer
Slogan - springer

Mathematics - Algebra | Structure and Geometry of Lie Groups

Structure and Geometry of Lie Groups

Hilgert, Joachim, Neeb, Karl-Hermann

2012, X, 746 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-0-387-84794-8

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-0-387-84793-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-1-4899-9006-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Systematically presents the structure theory of general, unrestricted Lie groups
  • Self-contained, with two appendices on covering theory and multilinear algebra
  • Includes abundant classroom-tested exercises
  • Useful as both a graduate text and as a research reference for a broad range of mathematicians

This text is designed as an introduction to Lie groups and their actions on manifolds, one that is accessible both to a broad range of mathematicians and to graduate students. Building on the authors' Lie-Gruppen und Lie-Algebren textbook from 1991, it presents the fundamental  principles of Lie groups while incorporating the past 20 years of the authors' teaching and research, and giving due emphasis to the role played by differential geometry in the field. The text is entirely self contained, and provides ample guidance to students with the presence of many exercises and selected hints.

The work begins with a study of matrix groups, which serve as examples to concretely and directly illustrate the correspondence between groups and their Lie algebras. In the second part of the book, the authors investigate the basic structure and representation theory of finite dimensional Lie algebras, such as the rough structure theory relevant to the theorems of Levi and Malcev, the fine structure of semisimple Lie algebras (root decompositions), and questions related to representation theory. In the third part of the book, the authors turn to global issues, most notably the interplay between differential geometry and Lie theory. Finally, the fourth part of the book deals with the structure theory of Lie groups, including some refined applications of the exponential function, various classes of Lie groups, and structural issues for general Lie groups. To round out the book's content, several appendices appear at the end of this last part.

Containing a wealth of useful information, including new results, Structure and Geometry of Lie Groups provides a unique perspective on the study of Lie groups and is a valuable addition to the literature. Prerequisites are generally kept to a minimum, and various pedagogical features make it an excellent supplemental text for graduate students. However, the work also contains much that will be of interest to more advanced audiences, and can serve as a useful research reference in the field.

Content Level » Research

Keywords » Lie algebras - Lie groups - differentiable manifold - homogeneous space - invariant geometric space - matrix group - structure theory - transformation group

Related subjects » Algebra - Geometry & Topology

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Topological Groups, Lie Groups.