Logo - springer
Slogan - springer

Mathematics - Algebra | Ideals, Varieties, and Algorithms - An Introduction to Computational Algebraic Geometry and Commutative

Ideals, Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Cox, David A., Little, John, O'Shea, Donal

3rd ed. 2007, XV, 553 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.95

(net) price for USA

ISBN 978-0-387-35651-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-0-387-35650-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$59.95

(net) price for USA

ISBN 978-1-4419-2257-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated?

The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory.

The algorithms to answer questions such as those posed above are an important part of algebraic geometry. Although the algorithmic roots of algebraic geometry are old, it is only in the last forty years that computational methods have regained their earlier prominence. New algorithms, coupled with the power of fast computers, have led to both theoretical advances and interesting applications, for example in robotics and in geometric theorem proving.

In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes:

A significantly updated section on Maple in Appendix C

Updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR

A shorter proof of the Extension Theorem presented in Section 6 of Chapter 3

From the 2nd Edition:

"I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." -The American Mathematical Monthly

Content Level » Lower undergraduate

Keywords » Maple - Mathematica - addition - algebra - commutative property - computer algebra system - proof

Related subjects » Algebra - Computational Science & Engineering - Mathematics

Table of contents 

Geometry, Algebra, and Algorithms.- Groebner Bases.- Elimination Theory.- The Algebra–Geometry Dictionary.- Polynomial and Rational Functions on a Variety.- Robotics and Automatic Geometric Theorem Proving.- Invariant Theory of Finite Groups.- Projective Algebraic Geometry.- The Dimension of a Variety.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Algebraic Geometry.