Logo - springer
Slogan - springer

Materials - Optical & Electronic Materials | Quantum Dots

Quantum Dots

Jacak, Lucjan, Hawrylak, Pawel, Wojs, Arkadiusz

Softcover reprint of the original 1st ed. 1998, VIII, 176p. 93 illus..

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-72002-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-642-72004-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • About this book

  • Concentrates on: one-particle properties, many-electron dot, probing of a dot with tunneling, FIR, PL
  • Comparison of band-structure and effective-mass-method based models
The book contains an up-to-date overview of the physics and technology of the man-made artificial atoms, i.e. the quantum dots. Different methods of creation of quantum dots, and the mechanism of carrier confinement in these structures are described. Discussed are the fundamental properties of these quasi-zero-dimensional many-electron systems, such as the single-particle energy quantization, generalized Kohn theorem, the effects due to electron-electron and spin-orbit interactions, magic states and the composite fermion formation in high magnetic fields, and the interaction of a dot with the visible and far-infrared light. The review of experiments carried out on quantum dots includes the capacitance, photoluminescence, and far-infrared spectroscopies. The original part contains the detailed analysis of the atomic-like properties of self-assembled quantum dots (shell structure, Hund rules, exciton condensation), the discussion of the effects due to the spin-orbit interaction (revealed in capacitance and far-infrared spectroscopies), and the description of the structure of luminescence spectrum of a quantum dot in terms of metastable excitonic states (also in a magnetic field).

Content Level » Research

Keywords » electronic structure - mechanics - quantum dot - quantum mechanics - spectroscopy

Related subjects » Characterization & Evaluation of Materials - Electronics & Electrical Engineering - Nanotechnology - Optical & Electronic Materials

Table of contents 

1. Introduction.- 2. Creation and Structure of Quantum Dots.- 3. Single-Particle States of Quantum Dots.- 4. Properties of an Interacting System.- 5. Intraband Optical Transitions.- 6. Interband Optical Transitions.- 7. Capacitance Spectroscopy.- 8. Description of the Properties of Self-Assembled Quantum Dots Within the Band-Structure Model.- 9. Description of a Many-Electron Quantum Dot with the Inclusion of the Spin-Orbit Interaction.- 10. Description of an Exciton in a Quantum Dot Within the Effective-Mass Approximation.- References.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Optical and Electronic Materials.