Skip to main content
Book cover

Noncontact Atomic Force Microscopy

  • Book
  • © 2002

Overview

  • This book is a top state-of-the-art report on all the methods in noncontact atomic force microscopy prepared by the leading experts in the field
  • Includes supplementary material: sn.pub/extras

Part of the book series: NanoScience and Technology (NANO)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (20 chapters)

Keywords

About this book

Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.

Reviews

"This book gives a comprehensive overview of the state-of-the-art of this dynamic force microscopy technique in 20 chapters, each written by experts in the field. It covers the theoretical basis, as well as applications to semiconducting surfaces, ionic crystals, metal oxides, and organic molecular systems including thin films, polymers, and nucleic acids . . . There are unsolved questions about the mechanisms responsible for atomic resolution but, as this well-written book displays, there has been tremendous progress in basic understanding of the technique and fascinating new applications continue to arise . . . With an increased understanding of NC-AFM, as demonstrated in this book, we are certain to see further progress in the near future."

–Materials Today

Editors and Affiliations

  • Department of Electronic Engineering, Graduate School of Engineering, Osaka University, Suita, Japan

    S. Morita

  • Institute of Applied Physics, MARCH, University of Hamburg, Hamburg, Germany

    R. Wiesendanger

  • Department of Physics and Astronomy, Condensed Matter Division, University of Basel, Basel, Switzerland

    E. Meyer

Bibliographic Information

Publish with us