Logo - springer
Slogan - springer

Materials - Mechanics | Separated Representations and PGD-Based Model Reduction - Fundamentals and Applications

Separated Representations and PGD-Based Model Reduction

Fundamentals and Applications

Chinesta, Francisco, Ladevèze, Pierre (Eds.)

2014, VII, 227 p. 74 illus.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-7091-1794-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-7091-1793-4

free shipping for individuals worldwide

online orders shipping within 2-3 days.

add to marked items

  • First book on this topic addressing a large audience (from undergraduate students to experienced researchers)
  • Hot topic
  • New ways of problem solving
The papers in this volume start with a description of  the construction of reduced models through a review of Proper Orthogonal Decomposition (POD) and reduced basis models, including their mathematical foundations and some challenging applications, then followed by a description of a  new generation of simulation strategies based on the use of separated representations (space-parameters, space-time, space-time-parameters, space-space,…), which have led to what is known as Proper Generalized Decomposition (PGD) techniques. The models can be enriched by treating parameters as additional coordinates, leading to fast and inexpensive online calculations based on richer offline parametric solutions. Separated representations are analyzed in detail in the course, from their mathematical foundations to their most spectacular applications. It is also shown how such an approximation could evolve into a new paradigm in computational science, enabling one to circumvent various computational issues in a vast array of applications in engineering science.

Content Level » Research

Keywords » Computational Solid Mechanics - Orthogonal Decomposition - Proper Generalized Decomposition - Simulation Techniques

Related subjects » Computational Science & Engineering - Information Systems and Applications - Mechanics

Table of contents 

Model order reduction based on proper orthogonal decomposition: Model reduction: extracting relevant information.- Interpolation of reduced basis: a geometrical approach.- POD for non-linear models.- Conclusions.- PGD for solving multidimensional and parametric models: Introduction.- Separated representations.- Advanced topics.- Models defined in plate and shell geometries.- Computational vademecums.- PGD in linear and nonlinear Computational Solid Mechanics: Introduction.- PGD –Verification for linear problems (elliptic and parabolic).- PGD for time dependent nonlinear problems (monoscale and multiscale problems).- Reduced basis approximation and error estimation for parameterized elliptic partial differential equations and applications: Introduction and motivation.- Parameterized problems.- High order and reduced order models with reduced basis method: greedy algorithm and a posteriori error estimation.- Applications.- Conclusion.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Theoretical and Applied Mechanics.