Logo - springer
Slogan - springer

Materials - Mechanics | Computational Contact Mechanics - Geometrically Exact Theory for Arbitrary Shaped Bodies

Computational Contact Mechanics

Geometrically Exact Theory for Arbitrary Shaped Bodies

Konyukhov, Alexander, Schweizerhof, Karl

2013, XXII, 446 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$139.00

(net) price for USA

ISBN 978-3-642-31531-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-31530-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-44541-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Fuses differential geometry into computational contact mechanics
  • Research monograph on computational contact mechanics formulated in a covariant form
  • Gives the necessary introductory treatment of differential geometry for curves and surfaces
  • Contains new analytical results for the verification of contact algorithms
  • Gives the reader a closed form algorithms for finite element implementations independently of the type of approximation  involved in the discretization process as well as for any isogeometric analysis

This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.  The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a  certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others  are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are  then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation.

The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and  contains the associated  numerical analysis as well as some new analytical results in contact mechanics.

Content Level » Research

Keywords » Closest Point Projection Procedure - Computational Contact Mechanics - Contact Mechanics - Covariant - Existence - Finite Elements - Geometry of Surfaces and Curves - Linearization - Numerical Methods - Solid-Beam - Surface-To-Surface - Uniqueness

Related subjects » Classical Continuum Physics - Mechanics

Table of contents 

Differential Geometry of Surfaces and Curves.- Closest Point Projection Procedure and Corresponding Curvilinear Coordinate System.- Geometry and Kinematics of Contact.- Weak Formulation of Contact Conditions.- Contact Constraints and Constitutive Equations for Contact Tractions.- Linearization of the Weak Forms – Tangent Matrices in a Covariant Form.- Surface-To-Surface Contact – Various Aspects for Implementations.- Special Case of Implementation – Reduction into 2D Case.- Implementation of Contact Algorithms with High Order FE.- Anisotropic Adhesion-Friction Models – Implementation.- Experimental Validations of the Coupled Anistropi.- Various Aspects of Implementation of the Curve-To-Curve Contact Model.- 3D-Generalization of the Euler-Eytelwein Formula Considering Pitch.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Continuum Mechanics and Mechanics of Materials.