Logo - springer
Slogan - springer

Materials - Mechanics | Energy Methods in Dynamics

Energy Methods in Dynamics

Le, Khanh Chau

2012, X, 294p. 142 illus..

eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

(net) price for USA

ISBN 978-3-642-22404-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

$119.00
  • Gives insight into the mechanism of vibrations and waves in order to control them in an optimal way Introduction to the systematic and intensive use of Hamilton's variational principle and its generalizations for deriving the governing equations of conservative and dissipative mechanical systems
  • Presents the first principles from which the governing equations can be derived, and the adequate mathematical methods for their solving
  • Presents the direct variational-asymptotic analysis and how many well-known methods in dynamics like those of Lindstedt-Poincare, Bogoliubov-Mitropolsky, Kolmogorov-Arnold-Moser (KAM), and Witham can be derived from it
  • Written by leading experts in the field

The above examples should make clear the necessity of understanding the mechanism of vibrations and waves in order to control them in an optimal way. However vibrations and waves are governed by differential equations which require, as a rule, rather complicated mathematical methods for their analysis. The aim of this textbook is to help students acquire both a good grasp of the first principles from which the governing equations can be derived, and the adequate mathematical methods for their solving. Its distinctive features, as seen from the title, lie in the systematic and intensive use of Hamilton's variational principle and its generalizations for deriving the governing equations of conservative and dissipative mechanical systems, and also in providing the direct variational-asymptotic analysis, whenever available, of the energy and dissipation for the solution of these equations. It will be demonstrated that many well-known methods in dynamics like those of Lindstedt-Poincare, Bogoliubov-Mitropolsky, Kolmogorov-Arnold-Moser (KAM), and Whitham are derivable from this variational-asymptotic analysis.

 

This book grew up from the lectures given by the author in the last decade at the Ruhr University Bochum, Germany. Since vibrations and waves are constituents of various disciplines (physics, mechanics, electrical engineering etc.) and cannot be handled in a single textbook, I have restricted myself mainly to vibrations and waves of mechanical nature. The material of this book can be recommended for a one year course in higher dynamics for graduate students of mechanical and civil engineering. For this circle of readers, the emphasis is made on the constructive methods of solution and not on the rigorous mathematical proofs of convergence. As compensation, various numerical simulations of the exact and approximate solutions are provided which demonstrate vividly the validity of the used methods. To help students become more proficient, each chapter ends with exercises, of which some can be solved effectively by using Mathematica

Content Level » Research

Keywords » Dissipation - Energy - Hamilton’s Variational Principle and its Generalization - Variational-Asymptotic Method

Related subjects » Complexity - Computational Intelligence and Complexity - Dynamical Systems & Differential Equations - Mechanics

Table of contents 

I Linear theory.- 1 Single oscillator.- 2 Coupled oscillator.- 3 Continuous oscillator.- 4 Linear waves.- II Nonlinear theory.- 5 Single oscillator.- 6 Forced oscillator.- 7 Coupled oscillator.- 8 Nonlinear waves.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Vibration, Dynamical Systems, Control.