Logo - springer
Slogan - springer

Materials - Mechanics | Near-Field Characterization of Micro/Nano-Scaled Fluid Flows

Near-Field Characterization of Micro/Nano-Scaled Fluid Flows

Kihm, Kenneth D

2011, VIII, 156 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-3-642-20426-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-20425-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-26737-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents a number of label-free experimental techniques
  • Presentation on each technique is laid out for the working principle
  • Written for experts in this field

The near-field – the region within 100 nm from a solid interface - is an exciting arena in which several important multi-scale transport phenomena are physically characterized, such as flow mixing and drag, heat and mass transfer, near-wall behavior of nanoparticles, the binding of bio-molecules, crystallization, and surface deposition processes, just to name a few. This book presents a number of microscopicimaging techniques that were implemented and tested for near-field fluidic characterizations. These methods include Total Internal Reflection Microscopy (TIRM), Optical Serial Sectioning Microscopy (OSSM), Confocal Laser Scanning Microscopy (CLSM), Surface Plasmon Resonance Microscopy (SPRM), and Reflection Interference Contrast Microscopy (RICM). The basic principles, specifics of implementation, and example applications of each method are presented in order to promote the reader’s understanding of the techniques, so that these may be applied to their own research interests.

Content Level » Research

Keywords » Fluid-Solid-Interface - Interference Reflection Contrast Microscopy (IRCM) - Micro-Cantilever Near-Field Thermometry - Optical Serial Sectioning Microscopy (OSSM) - Scanning Thermal Microscopy - Surface Plasmon Resonance Microscopy (SPRM) - Thermal Near-Field Anemometry - Total Internal Reflection Microscopy (TIRM)

Related subjects » Classical Continuum Physics - Mechanics

Table of contents 

Preface

1.         Introduction

1.1       Definitions of near-field

1.1.1        Evanescent wave penetration depth

1.1.3    Photon penetration skin-depth into metal

1.1.4    Penetration depth of no-slip boundary conditions

1.1.5    Equilibrium height (hm) for small particles under near-field forces

1.2          Synopsis

 

2.         Total Internal Reflection Microscopy (TIRM)

2.1       Principles and configuration of TIRM

2.2       Ratiometric TIRM imaging analysis

2. 3      Near-field applications of TIRM

2.3.1    Near-wall hindered Brownian motion of nanoparticles

2.3.2    Slip-flows in the near-field

2.3.3    Cytoplasmic viscosity and intracellular vesicle sizes

 

3.         Optical Serial Sectioning Microscopy (OSSM)

3.1       Point spread functions (PSFs) under aberration-free design conditions

3.2       Point spread functions (PSFs) under off-design conditions

3.3       Principles of OSSM

3.4       Near-field applications of OSSM

3.4.1    Three-dimensional particle tracking velocimetry (PTV)

3.4.2    Near-wall thermometry

3.4.3    Near-field mixture concentration measurements

 

4.         Confocal Laser Scanning Microscopy (CLSM)

4.1       Principles of confocal imaging

4.2       Microscopic imaging resolutions

4.3       Confocal microscopic imaging resolutions

4.4       Optical slicing thickness of confocal microscopy

4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system

4.6       Near-field applications of CLSM-PIV

4.6.1    Poiseuille flows in a microtube

4.6.2    Microscale rotating Couette flows

4.6.3    Moving bubbles in a microchannel

 

5.         Surface Plasmon Resonance Microscopy (SPRM)

5.1       Surface plasmon polaritons (SPPs)

5.2       Dispersion of SPPs

5.3.      Kretschmann’s three-layer configuration

5.4       Surface plasmon resonance (SPR) reflectance

5.5       Surface plasmon resonance microscopy (SPRM) imaging systems

5.6       Selection of a prism for SPRM

5.7       SPR reflectance imaging resolution

5.8       Near-field applications of SPRM

5.8.1    History and uses of SPRM

5.8.2    Label-free mapping of microfluidic mixing fields

5.8.3    Near-field mapping of salinity diffusion

5.8.4    Dynamic monitoring of nanoparticle concentration profiles

5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly

5.8.6    Near-wall thermometry

 

6.         Reflection Interference Contrast Microscopy (RICM)

6.1       Interference of plane waves

6.2       Principles and practical issues of RICM

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

1.         Introduction

1.1       Definitions of near-field

1.1.1        Evanescent wave penetration depth

1.1.3    Photon penetration skin-depth into metal

1.1.4    Penetration depth of no-slip boundary conditions

1.1.5    Equilibrium height (hm) for small particles under near-field forces

1.2          Synopsis

 

2.         Total Internal Reflection Microscopy (TIRM)

2.1       Principles and configuration of TIRM

2.2       Ratiometric TIRM imaging analysis

2. 3      Near-field applications of TIRM

2.3.1    Near-wall hindered Brownian motion of nanoparticles

2.3.2    Slip-flows in the near-field

2.3.3    Cytoplasmic viscosity and intracellular vesicle sizes

 

3.         Optical Serial Sectioning Microscopy (OSSM)

3.1       Point spread functions (PSFs) under aberration-free design conditions

3.2       Point spread functions (PSFs) under off-design conditions

3.3       Principles of OSSM

3.4       Near-field applications of OSSM

3.4.1    Three-dimensional particle tracking velocimetry (PTV)

3.4.2    Near-wall thermometry

3.4.3    Near-field mixture concentration measurements

 

4.         Confocal Laser Scanning Microscopy (CLSM)

4.1       Principles of confocal imaging

4.2       Microscopic imaging resolutions

4.3       Confocal microscopic imaging resolutions

4.4       Optical slicing thickness of confocal microscopy

4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system

4.6       Near-field applications of CLSM-PIV

4.6.1    Poiseuille flows in a microtube

4.6.2    Microscale rotating Couette flows

4.6.3    Moving bubbles in a microchannel

 

5.         Surface Plasmon Resonance Microscopy (SPRM)

5.1       Surface plasmon polaritons (SPPs)

5.2       Dispersion of SPPs

5.3.      Kretschmann’s three-layer configuration

5.4       Surface plasmon resonance (SPR) reflectance

5.5       Surface plasmon resonance microscopy (SPRM) imaging systems

5.6       Selection of a prism for SPRM

5.7       SPR reflectance imaging resolution

5.8       Near-field applications of SPRM

5.8.1    History and uses of SPRM

5.8.2    Label-free mapping of microfluidic mixing fields

5.8.3    Near-field mapping of salinity diffusion

5.8.4    Dynamic monitoring of nanoparticle concentration profiles

5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly

5.8.6    Near-wall thermometry

 

6.         Reflection Interference Contrast Microscopy (RICM)

6.1       Interference of plane waves

6.2       Principles and practical issues of RICM

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

3.1       Point spread functions (PSFs) under aberration-free design conditions

3.2       Point spread functions (PSFs) under off-design conditions

3.3       Principles of OSSM

3.4       Near-field applications of OSSM

3.4.1    Three-dimensional particle tracking velocimetry (PTV)

3.4.2    Near-wall thermometry

3.4.3    Near-field mixture concentration measurements

 

4.         Confocal Laser Scanning Microscopy (CLSM)

4.1       Principles of confocal imaging

4.2       Microscopic imaging resolutions

4.3       Confocal microscopic imaging resolutions

4.4       Optical slicing thickness of confocal microscopy

4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system

4.6       Near-field applications of CLSM-PIV

4.6.1    Poiseuille flows in a microtube

4.6.2    Microscale rotating Couette flows

4.6.3    Moving bubbles in a microchannel

 

5.         Surface Plasmon Resonance Microscopy (SPRM)

5.1       Surface plasmon polaritons (SPPs)

5.2       Dispersion of SPPs

5.3.      Kretschmann’s three-layer configuration

5.4       Surface plasmon resonance (SPR) reflectance

5.5       Surface plasmon resonance microscopy (SPRM) imaging systems

5.6       Selection of a prism for SPRM

5.7       SPR reflectance imaging resolution

5.8       Near-field applications of SPRM

5.8.1    History and uses of SPRM

5.8.2    Label-free mapping of microfluidic mixing fields

5.8.3    Near-field mapping of salinity diffusion

5.8.4    Dynamic monitoring of nanoparticle concentration profiles

5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly

5.8.6    Near-wall thermometry

 

6.         Reflection Interference Contrast Microscopy (RICM)

6.1       Interference of plane waves

6.2       Principles and practical issues of RICM

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

4.2       Microscopic imaging resolutions

4.3       Confocal microscopic imaging resolutions

4.4       Optical slicing thickness of confocal microscopy

4.5       Confocal laser scanning microscopic particle imaging velocimetry (CLSM-PIV) system

4.6       Near-field applications of CLSM-PIV

4.6.1    Poiseuille flows in a microtube

4.6.2    Microscale rotating Couette flows

4.6.3    Moving bubbles in a microchannel

 

5.         Surface Plasmon Resonance Microscopy (SPRM)

5.1       Surface plasmon polaritons (SPPs)

5.2       Dispersion of SPPs

5.3.      Kretschmann’s three-layer configuration

5.4       Surface plasmon resonance (SPR) reflectance

5.5       Surface plasmon resonance microscopy (SPRM) imaging systems

5.6       Selection of a prism for SPRM

5.7       SPR reflectance imaging resolution

5.8       Near-field applications of SPRM

5.8.1    History and uses of SPRM

5.8.2    Label-free mapping of microfluidic mixing fields

5.8.3    Near-field mapping of salinity diffusion

5.8.4    Dynamic monitoring of nanoparticle concentration profiles

5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly

5.8.6    Near-wall thermometry

 

6.         Reflection Interference Contrast Microscopy (RICM)

6.1       Interference of plane waves

6.2       Principles and practical issues of RICM

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

5.5       Surface plasmon resonance microscopy (SPRM) imaging systems

5.6       Selection of a prism for SPRM

5.7       SPR reflectance imaging resolution

5.8       Near-field applications of SPRM

5.8.1    History and uses of SPRM

5.8.2    Label-free mapping of microfluidic mixing fields

5.8.3    Near-field mapping of salinity diffusion

5.8.4    Dynamic monitoring of nanoparticle concentration profiles

5.8.5    Unveiling the fingerprints of nanocrystalline self-assembly

5.8.6    Near-wall thermometry

 

6.         Reflection Interference Contrast Microscopy (RICM)

6.1       Interference of plane waves

6.2       Principles and practical issues of RICM

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

6.3       Near-field applications of RICM

6.3.1    Thin-film thickness measurements

6.3.2    Electrohydrodynamic (EHD) control of thin liquid film

6.3.3    Dynamic fingerprinting of live-cell focal contacts

 

References

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Engineering Fluid Dynamics.