Skip to main content
Book cover

The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

Delayed Hydride Cracking

  • Book
  • © 2012

Overview

  • Gives a coherent, detailed account of the physics of delayed hydrogen cracking
  • Provides a reference source for research conducted on the effect of hydrogen and hydrides on the mechanical properties of zirconium alloys
  • Provides an account of how the current methodology for the design and periodic assessment of in-service pressure tubes is underpinned by the foregoing results and understanding
  • Includes supplementary material: sn.pub/extras
  • Includes supplementary material: sn.pub/extras

Part of the book series: Engineering Materials (ENG.MAT.)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the emphasis lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.

 

This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors.  Emphasis is placed on showing how our understanding of DHC is supported by progress in general understanding of such broad fields as the study of hysteresis associated with first order phase transformations, phase relationships in coherent crystalline metallic solids, the physics of point and line defects, diffusion of substitutional and interstitial atoms in crystalline solids, and continuum fracture and solid mechanics. Furthermore, an account of current methodologies is given illustrating how such understanding of hydrogen, hydrides and DHC in zirconium alloys underpins these methodologies for assessments of real life cases in the Canadian nuclear industry.

 

The all-encompassing approach makes The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Component: Delayed Hydride Cracking an ideal reference source for students, researchers and industry professionals alike.

Authors and Affiliations

  • MPP Consulting, Oakville, Canada

    Manfred P. Puls

About the author

Manfred Puls is a consultant, working through MPP Consulting with Kinectrics Inc. in support of research conducted for the Canadian nuclear industry.  He holds a PhD degree in Physics from McMaster University, Hamilton, Ontario, Canada, and has engineering degrees from the University of British Columbia, Vancouver, B.C., Canada.  He has been working in the nuclear industry since 1971. Before moving into his present consulting role, Dr Puls had a long career with AECL, working as Research Scientist, Section Head, Manager and Program Manager during his 35 year stay with this organization.

Bibliographic Information

  • Book Title: The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components

  • Book Subtitle: Delayed Hydride Cracking

  • Authors: Manfred P. Puls

  • Series Title: Engineering Materials

  • DOI: https://doi.org/10.1007/978-1-4471-4195-2

  • Publisher: Springer London

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer-Verlag London 2012

  • Hardcover ISBN: 978-1-4471-4194-5Published: 04 August 2012

  • Softcover ISBN: 978-1-4471-5977-3Published: 20 September 2014

  • eBook ISBN: 978-1-4471-4195-2Published: 04 August 2012

  • Series ISSN: 1612-1317

  • Series E-ISSN: 1868-1212

  • Edition Number: 1

  • Number of Pages: XXXII, 452

  • Topics: Solid Mechanics, Industrial Chemistry/Chemical Engineering, Metallic Materials, Nuclear Energy, Nuclear Energy

Publish with us