Logo - springer
Slogan - springer

Materials - Characterization & Evaluation of Materials | Fusion Bonding of Polymer Composites

Fusion Bonding of Polymer Composites

Ageorges, C., Ye, L.

2002, XVIII, 273 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$199.00

(net) price for USA

ISBN 978-1-4471-0171-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-1-85233-429-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-1-4471-1087-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Fusion bonding is one of the three methods available for joining composite and dissimilar materials. While the other two, mechanical fastening and adhesion bonding, have been the subject of wide coverage both in textbooks and monographs, fusion bonding is covered here substantially for the first time. Fusion bonding offers a number of advantages over traditional joining techniques and it is anticipated that its use will increase dramatically in the future because of the rise in the use of thermoplastic matrix composites and the growing necessity for recyclability of engineering assemblies. Fusion Bonding of Polymer Composites provides an in-depth understanding of the physical mechanisms involved in the fusion bonding process, covering such topics as:
- heat transfer in fusion bonding;
- modelling thermal degradation;
- consolidation mechanisms;
- crystallisation kinetics;
- processing-microstructure-property relationship;
- full-scale fusion bonding;
- fusion bonding of thermosetting composite/thermoplastic composite and metal/thermoplastic joints.
The book focuses on one practical case study using the resistance welding process. This example exposes the reader to the development of processing windows for a novel manufacturing process including the use of experimental test programmes and modelling strategies.

Content Level » Research

Keywords » PEEK - PEI - Polycarbonat - SMC - Thermoplast - polymer - thermoset

Related subjects » Characterization & Evaluation of Materials - Polymer Science - Production & Process Engineering

Table of contents 

1. Introduction.- 1.1 Advanced Thermoplastic Matrix Composites (TMPCs).- 1.2 Joining Technology for Composite Materials.- 1.3 References.- 2. The State of the Art in Fusion Bonding of Polymer Composites.- 2.1 Introduction.- 2.2 Traditional Technologies.- 2.2.1 Mechanical Fastening.- 2.2.1.1 Bolted/Riveted Joints.- 2.2.1.2 Integral Fit Joint Technology.- 2.2.2 Adhesive Bonding.- 2.2.3 Solvent Bonding.- 2.3 Fusion Bonding Technology.- 2.3.1 Introduction.- 2.3.2 Fusion Bonding Techniques.- 2.3.2.1 Bulk Heating.- 2.3.2.2 Fractional Heating.- 2.3.2.3 Electromagnetic Heating.- 2.3.2.4 Two-stage Techniques.- 2.4 Joining of Dissimilar Materials.- 2.4.1 Introduction.- 2.4.2 Metal Substrates.- 2.4.2.1 Surface Preparation.- 2.4.2.2 Fusion Bonding of TPMCs and Metal Substrates.- 2.4.3 TSMC Substrates.- 2.4.3.1 TP Hybrid Interlayer.- 2.4.3.2 TP Film Co-cure.- 2.5 Comparative Assessment.- 2.5.1 Joint Performance.- 2.5.1.1 Strength.- 2.5.1.2 Durability.- 2.5.2 Process Performance.- 2.5.2.1 Cost and Processing Time.- 2.5.2.2 Quality.- 2.5.2.3 Suitability to Automation/Production Environment.- 2.5.2.4 Minimal Surface Preparation.- 2.5.3 Process Adaptability.- 2.5.3.1 Flexibility.- 2.5.3.2 Large-scale Joining.- 2.5.3.3 Portability/Application to Repair.- 2.5.4 Environmental Aspects.- 2.5.4.1 Reprocessing/Recycling.- 2.5.4.2 Environmental Friendliness.- 2.6 Concluding Remarks.- 2.7 References.- 3. Heat Transfer in Fusion Bonding.- 3.1 Introduction.- 3.2 Heat Generation.- 3.2.1 Ultrasonic Welding.- 3.2.2 Induction Welding.- 3.2.3 Resistance Welding.- 3.2.3.1 Joule Heating.- 3.2.3.2 IRW.- 3.3 Heat Transfer.- 3.3.1 Modelling the Geometry through the FEM.- 3.3.2 Heat Transfer Theory.- 3.3.3 Modelling of Interfaces Between Plies.- 3.3.4 Non-uniform Heating.- 3.3.5 Improvement of Heat Transfer in Penetration Area.- 3.4 Modelling Thermal Degradation.- 3.4.1 Approximation of Thermal Degradation.- 3.4.2 Thermal Degradation Kinetic Model.- 3.5 Aspects Influencing Heat Transfer in Resistance Welding.- 3.5.1 Material Properties.- 3.5.2 Basic Results for Heat Transfer.- 3.5.3 Effect of Latent Heat.- 3.5.4 Effect of Rough Contact Surfaces.- 3.5.5 Non-uniform Heat Generation in Resistance Welding.- 3.6 Simulations of Resistance Welding.- 3.6.1 Temperature Uniformity in Welding Interface.- 3.6.2 Processing Windows.- 3.6.3 Heat Transfer to Laminate.- 3.6.4 IRW.- 3.6.4.1 In-air HE.- 3.6.4.2 Embedded HE.- 3.7 Concluding Remarks.- 3.8 References.- 4. Consolidation Mechanisms.- 4.1 Introduction.- 4.2 Basic Mechanisms for Fusion Bonding.- 4.2.1 Consolidation Mechanisms.- 4.2.2 Intimate Contact Model.- 4.2.3 Autohesion Model.- 4.2.4 Non-isothermal Bonding Process.- 4.3 Simulations of Consolidation for Resistance Welding.- 4.3.1 Material Properties.- 4.3.2 Effect of Surface Roughness on Intimate Contact.- 4.3.3 Processing Windows.- 4.3.4 Effect of Consolidation Pressure on Intimate Contact.- 4.3.5 IRW.- 4.3.5.1 Simulations of Consolidation.- 4.3.5.2 Comparison with Experimental Data.- 4.4 De-consolidation Phenomenon.- 4.5 Concluding Remarks.- 4.6 References.- 5. Crystallisation Kinetics.- 5.1 Introduction.- 5.2 Description of Crystallisation Kinetics and Crystal Melting Kinetics Models.- 5.2.1 Ozawa's Crystallisation Kinetics Model.- 5.2.2 Velisaris and Seferis' Crystallisation Kinetics Model.- 5.2.3 The Choe and Lee Crystallisation Kinetics Model.- 5.2.4 Icenogle's Crystallisation Kinetics Model.- 5.2.5 The Maffezzoli et al. Crystal Melting Kinetics Model.- 5.3 A Transient Crystallinity Model for Resistance Welding.- 5.4 Simulations of the Crystallinity Level.- 5.4.1 Crystallisation Kinetics.- 5.4.2 Crystallisation Kinetics Coupled with Crystal Melting Kinetics....- 5.4.3 Influence of Environmental Temperature.- 5.4.4 Influence of Latent Heat of Crystallisation and Crystal Melting....- 5.4.5 Evaluation of the CF-PP/PP Welding Configuration.- 5.5 Concluding Remarks.- 5.6 References.- 6. Processing-Microstructure-Property Relationship.- 6.1 Introduction.- 6.2 Experimental Techniques.- 6.2.1 Laminates.- 6.2.2 HEs.- 6.2.3 Resistance Welding.- 6.2.4 Temperature Measurements.- 6.2.5 Modelling.- 6.3 Assessing Parent Materials Properties.- 6.4 Heat Generation and Heat Transfer.- 6.4.1 Resistance of HE.- 6.4.1.1 Measurement of Resistance.- 6.4.1.2 Dependency of Resistance of HE on Temperature.- 6.4.1.3 Influence of Clamping Force on Electrical Contact Efficiency.- 6.4.2 Determination of Power Density.- 6.4.3 Efficiency of CF HEs.- 6.4.4 Temperature Measurements in LS Coupons.- 6.4.5 Comparison with FEM Predictions.- 6.5 Determination of Processing Windows.- 6.5.1 Optimised Welding Times.- 6.5.2 Welding Curves and Thickness Reduction.- 6.5.3 Welding Pressure and Consolidation Quality.- 6.5.4 Failure Mechanisms.- 6.5.5 Processing Window.- 6.5.6 Fabric HEs.- 6.6 Concluding Remarks.- 6.7 References.- 7. Full-scale Fusion Bonding.- 7.1 Introduction.- 7.2 Strategies for Transition to Large-scale Fusion Bonding.- 7.2.1 Ultrasonic Welding.- 7.2.2 Induction Welding.- 7.2.3 Resistance Welding.- 7.3 Large-scale Resistance Welding.- 7.3.1 Current Leakage to Laminate.- 7.3.2 Heat Transfer in Welding Stack.- 7.3.3 Large Width LS Coupons.- 7.3.4 DCB Coupons.- 7.4 Concluding Remarks.- 7.5 References.- 8. Fusion Bonding of TSMC/TPMC Joints.- 8.1 Introduction.- 8.2 Experimental.- 8.3 TP Hybrid Interlayer.- 8.4 Modelling.- 8.5 Characterisation of CF-Epoxy/CF-PEI Joints.- 8.5.1 Consolidation and Microstructure.- 8.5.2 Failure Mechanisms.- 8.5.3 Simulated Results.- 8.5.4 Optimisation of the Processing Windows.- 8.6 Concluding Remarks.- 8.7 References.- 9. Fusion Bonding of Metal/TPMC Joints.- 9.1 Introduction.- 9.2 Experimental.- 9.3 Simulation of Resistance Welding of Aluminium/CF-PEI LS Joints.- 9.3.1 FEM.- 9.3.2 Simulation of Temperature and Welding Times.- 9.4 Characterisation of Aluminium/CF-PEI LS Joints.- 9.4.1 Consolidation and Microstructure.- 9.4.2 Failure Mechanisms.- 9.4.3 Annealing of Aluminium Substrates.- 9.4.4 Optimisation of the Processing Window.- 9.5 Concluding Remarks.- 9.6 References.- Appendix A. Material Properties for Simulations.- Appendix B. Parameters for Crystallisation and Crystal Melting Kinetics Models.- Appendix C. Thermal Degradation Kinetic Model.- C.I Thermal Degradation Model for CF-epoxy Composite.- C.2 Thermal Degradation Model for PEI.- C.3 Thermal Degradation Model for PEEK.- C.4 References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Characterization and Evaluation of Materials.