Logo - springer
Slogan - springer

Materials | Electron Crystallography - Novel Approaches for Structure Determination of Nanosized Materials

Electron Crystallography

Novel Approaches for Structure Determination of Nanosized Materials

Proceedings of the NATO Advanced Study Institute on Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials, Erice, Italy, 10 - 24 June 2004

Series: Nato Science Series II:, Vol. 211

Weirich, Thomas E., Lábár, János L., Zou, Xiaodong (Eds.)

2006, XVIII, 536 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-1-4020-3920-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$439.00

(net) price for USA

ISBN 978-1-4020-3918-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-1-4020-3919-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to reveal the intimate structure of samples with high accuracy but on much smaller samples than have ever been investigated by X-ray diffraction. As a tribute to these tremendous recent achievements, this NATO Advanced Study Institute was devoted to the novel approaches of electron crystallography for structure determination of nanosized materials.

Content Level » Research

Keywords » Crystallography - Electron energy loss spectroscopy - Powder diffraction - Transmission electron microscopy - alloy - crystal - diffraction - electron diffraction - electron microscope - electron microscopy - microscopy - mineralogy - polymer - spectroscopy

Related subjects » Catalysis - Characterization & Evaluation of Materials - Geology - Materials - Surfaces, Interfaces, Thin Films, Corrosion, Coatings

Table of contents 

List of Contributors, Lectures,A. Introduction.A.1.What is electron crystallography; X.D. Zou.- A.2 Exploiting sub-Ångstrom abilities What advantages do different techniques offer? C. Kisielowski.- A.3 The way forward for electron crystallography; J.C.H. Spence.- A.4 Symmetry and structure M. Hargittai, I. Hargittai.- B. Experimental techniques. B.1 Introduction to electron diffraction; J.P. Morniroli.- B.2 Symmetry determination by electron diffraction; J.P. Morniroli.- B.3 Electron diffraction structure analysis Specimens and their electron diffraction patterns; V. Klechkovskaya .- B.4 Quantitative electron diffraction structure analysis Theory and practise of determing the electrostatic potential and chemical bonding in crystals; A.S. Avilov.- B.5 Quantification of texture patterns; P. Oleynikov et al.- B.6 Quantitative Convergent Beam electron diffraction Measurements of lattice parameters and crystal charge density; J.M. Zuo.- B.7 New instrumentation for TEM electron diffraction structure analysis: Electron diffractometry combined with beam precession; S. Nicolopoulos et al.- B.8 Role of electron powder diffraction in solving structures; J.L. Lábár .- B.9 Gas-phase electron diffraction for molecular structure determination; I. Hargittai.- B.10 Phase identification by combining local composition from EDX with information from diffraction database; J. L. Lábár.- B.11 Analysis of local structure, chemistry and bonding by electron energy loss spectroscopy; J. Mayer.- C. Crystal structure determination from electron microscopy data. C.1 From Fourier series towards crystal structures A survey of conventional methods for solving the phase problem; T.E. Weirich.- C.2 Crystal structure determination by image deconvolution and resolution enhancement; H. Jiang et al.- C.3 Structure determination from HREM by crystallographic image processing; X.D. Zou, S. Hovmöller.- C.4 3D reconstruction of inorganic crystals Theory and application; X.D. Zou, S.Hovmöller.- C.5 Solving and refining crystal structures from electron diffraction data; C.J. Gilmore, A. Stewart.- C.6 The maximum entropy method of solving crystal structures from electron diffraction data; C.J. Gilmore.- C.7 Structure refinement by taking dynamical diffraction into account Multi-slice least-squares refinement; J. Jansen.- C.8 TrueImage: A software package for focal-series reconstruction in HRTEM; C. Kübel, A. Thust.- D.Applications. D.1 New insights into the nanoworld of functional materials; G. Cox et al.-, D.2 Electron crystallography on polymorphs; U. Kolb, T. Gorelik.- D.3 Electron crystallography in mineralogy and materials science; D. Nihtianova et al.- D.4 Structures of zeolites and mesoporous crystals determined by electron diffraction and high-resolution electron microscopy; O. Terasaki.- D.5 HRTEM investigations of nanocrystalline materials; A.M. Tonejc.- D.6 Electron crystallography on beam sensitive materials Electron microscopy and electron diffraction of polymers; M. Tsuji.- D.7 Characterisation of catalysts by transmission electron microscopy; D. Wang.- E. Extended abstracts. E.1 Structural investigations of cold worked iron based alloys after nitriding; L. Demchenko et al.-, E.2 Structural refinement of nanocrystalline TiO2 samples; I. Djerdj et al.- E.3 Relation between magnetic properties and the structure of iron-based amorphous alloys determined by electron diffraction; O.V. Hryhoryeva.- E.4 Selected issues in quantitative structure analysis of nanocrystalline alloys; D. M. Kepatsoglou, et al.- E.5 Charge ordering and tilt modulation in multiferroic fluorides with TTB structure by electron diffraction and single crystal XRD; E. Montanari et al.- E.6 Electron diffraction by distorted nanocrystals Application of the eikonal representation; M.B. Shevchenko et al.- E.7 Electron microscopy investigations of glassy-like carbon; T.G. Shumilova et al.- E.8 Image deconvolution on crystals with interfaces; C.Y. Tang, F.H.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Crystallography.