Logo - springer
Slogan - springer

Materials | Self-Assembled Nanostructures

Self-Assembled Nanostructures

Jin Zhang, Zhong-lin Wang, Jun Liu, Shaowei Chen, Gang-yu Liu

2003, XVIII, 316 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$199.00

(net) price for USA

ISBN 978-0-306-47941-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$269.00

(net) price for USA

ISBN 978-0-306-47299-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-1-4757-8724-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

Content Level » Research

Keywords » Helium-Atom-Streuung - X-Ray - crystal - diffraction - electron microscopy - liquid - microscopy - nanomaterial - nanoparticle - polymer - spectroscopy - transmission electron microscopy

Related subjects » Characterization & Evaluation of Materials - Inorganic Chemistry - Materials - Physical Chemistry

Table of contents 

1: Introduction. 2: Synthetic Self-Assembled Materials: Principles and Practice. 2.1. Microscopic and Macroscopic Interactions. 2.2. Surfactants and Amphiphilic Molecules. 2.3. Transition from Dispersed State to Condensed State: The Beginning Point of Self-Assembly. 2.4. Packing Geometry: Attaining the Desired Self-Assembled Structures. 2.5. Self-Assembled Block Copolymer Nanostructures. 2.6. Co-Assembly of Liquid Crystalline Structures and Inorganic Materials. 2.7. Intelligent Nanoscale Materials. 2.8. References. 3: Examples of Nanoscale Materials in Nature. 3.1. Multiscale Ordering and Function in Biological Nanoscale Materials. 3.2. Hierarchical Ordering in Natural Nanoscale Materials. 3.3. Multifunction of the Organic Phase in Biological Nanoscale Materials. 3.4. References. 4: Nanocrystal Self-assembly. 4.1. Nanocrystals. 4.2. Shapes of Polyhedral Nanocrystals. 4.3. Self-assembly of Nanocrystals. 4.4. Solution-phase Self-assembly of Particles. 4.5. Technical Aspects of Self-assembling. 4.6. Properties of Nanocrystal Self-assembly. 4.7. Template Assisted Self-assembly. 4.8. Summary. 4.9. References. 5: Structural Characterization of Nanoarchitectures. 5.1. X-ray Diffraction. 5.2. Scanning Probe Microscopy. 5.3. Scanning Electron Microscopy. 5.4. Transmission Electron Microscopy. 5.5. Summary. 5.6. References. 6: Fabrication of Nanoarchitectures Using Lithographic Techniques. 6.1. Fabrication Techniques and Nanolithography. 6.2. X-ray, Electron and Ion Beam Lithography. 6.3. Nanoparticle Lithography. 6.4. Scanning Probe Lithography. 6.5. Concluding Remarks. 6.6. References. 7: Chemical and Photochemical Reactivities of Nano-architectures. 7.1. Redox Potentials of Nanomaterials. 7.2. Photochemical and Chemical Reactions. 7.3. Photoelectrochemical Reactions. 7.4. Photocatalysis and Environmental Applications. 7.5. Molecular Recognition and Surface Specific Interaction. 7.6. References. 8: Optical, Electronic, and Dynamic Properties of Semiconductor Nnaomaterials. 8.1. Energy Levels and Density of States in Reduced Dimension Systems. 8.2. Electronic Structure and Electronic Properties. 8.3. Optical Properties of Semiconductor Nanomaterials. 8.4. Applications of Optical Properties. 8.5. Charge Carrier Dynamics in Semiconductor Nanoparticles. 8.6. References. 9: Optical, Electronic, and Dynamic Properties of Metal Nanomaterials. 9.1. Static Absorption Properties of Metal Nanoparticles and Assemblies. 9.2. Emission of Metal Particles. 9.3. Surface Enhanced Raman Scattering (SERS). 9.4. Spectral Line Widths and Electronic Dephasing. 9.5. Electronic Relaxation Dynamics. 9.6. Electron-Phonon Interaction. 9.7. Single Particle Spectroscopy of Metal Nanoparticles. 9.8. Applications of Metal Nanoparticles. 9.9. References. 10: Electrochemical Properties of Nanoparticle Assemblies. 10.1. Introduction.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Condensed Matter Physics.