Logo - springer
Slogan - springer

Life Sciences - Systems Biology and Bioinformatics | Introduction to Data Mining for the Life Sciences

Introduction to Data Mining for the Life Sciences

Sullivan, Rob

2012, XVIII, 638 p.

A product of Humana Press
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-1-59745-290-8

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-58829-942-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-62703-948-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Data mining involves uncovering the patterns inherent within the data
  • Provides a set of techniques that can help the life scientist leverage the valuable data asset
  • With each set of techniques are tangible examples to support them

One of the major challenges for the scientific community, a challenge that has been seen in many business disciplines, is the exponential increase in data being generated by new experimental techniques and research. A single microarray experiment, for example, can generate thousands of data points that need to be analyzed, and this problem is predicted to increase. As new techniques in areas such as genomics and proteomics continue to be adopted into the mainstream as the costs fall, the need for effective mechanisms for synthesizing these disparate forms of data together for analysis is of paramount importance. But the sheer volume of data means that traditional techniques need to be augmented by approaches that elicit knowledge from the data, using automated procedures.

Data mining provides a set of such techniques, new techniques to integrate, synthesize, and analyze the data, uncovering the hidden patterns that exist within. Traditionally, techniques such as kernel learning methods, pattern recognition, and data mining, have been the domain of researchers in areas such as artificial intelligence, but leveraging these tools, techniques, and concepts against your data asset to identify problems early, understand interactions that exist and highlight previously unrealized relationships through the combination of these different disciplines can provide significant value for the investigator and her organization.

Content Level » Research

Keywords » plannedjc

Related subjects » Systems Biology and Bioinformatics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Bioinformatics.