Logo - springer
Slogan - springer

Life Sciences - Plant Sciences | Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, U.o.I. (Eds.)

2014, XXXVIII, 649 p. 170 illus., 88 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-94-017-9032-1

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-94-017-9031-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Covers photoprotection over multiple scales from the molecule to the ecosystem
  • Includes a broad range of disciplines, e.g. photophysics, biochemistry, molecular genetics, physiology, ecology, and evolution
  • Integrates photosynthesis and photoprotection into the context of whole-plant function
  • All chapters are authored by the leading authorities in each sub-discipline

Harnessing the sun’s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on protection (photoprotection) against the perils of intense sunlight.  The first line of defense among a cascade of photoprotective mechanisms is the safe removal of excess excitation energy within the light-harvesting system. The widely used indicator for photoprotective energy dissipation (thermal de-excitation of excited-state chlorophyll) is the quick, facile, and non-destructive assessment of non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing light harvesting and photoprotection into the context of whole-organism function, this book directs the use of NPQ to aid in the identification of plant and algal lines with superior stress resistance and productivity. Furthermore, this volume addresses open questions in the interpretation of the molecular mechanisms of light harvesting and energy dissipation, the resolution of which should aid in the development of artificial photosynthetic systems. A comprehensive picture – from theory to practice, and from single molecules to organisms in ecosystems – is presented. In addition to providing current views of the leading specialists in this area, this book includes basic and practical information for non-specialists. For example, this book critically examines uses and misuses of the term NPQ and of advantages and pitfalls of NPQ measurements, and presents concrete recommendations for all concerned.

Content Level » Research

Keywords » Carotenoids - Light harvesting - Photoprotection - Photosynthesis - Plant stress resistance

Related subjects » Cell Biology - Microbiology - Optics & Lasers - Plant Sciences - Renewable and Green Energy

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Plant Sciences.