Logo - springer
Slogan - springer

Life Sciences - Plant Sciences | Bayesian Networks and Decision Graphs

Bayesian Networks and Decision Graphs

Nielsen, Thomas Dyhre, VERNER JENSEN, FINN

2nd ed. 2007, XVI, 448 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-0-387-68282-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-0-387-68281-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-1-4419-2394-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Provides a practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams and Markov decision processes, making it ideal for both text book and self-study purposes
  • Step-by-step guides to the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge, enabling students to recreate the processes for themselves
  • A thorough introduction to state-of-the-art solution and analysis algorithms, crucial for practical study of the subject

Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis.

The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models.

The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also

    • provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes.
    • give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge.
    • <

    • give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs.
    • present a thorough introduction to state-of-the-art solution and analysis algorithms.

The book is intended as a textbook, but it can also be used for self-study and as a reference book.

Finn V. Jensen is a professor at the department of computer science at Aalborg University, Denmark.

Thomas D. Nielsen is an associate professor at the same department.

Content Level » Research

Keywords » Analysis - Bayesian network - Markov decision process - algorithms - artificial intelligence - computer - learning - modeling - uncertainty

Related subjects » Artificial Intelligence - Physical & Information Science - Plant Sciences - Probability Theory and Stochastic Processes - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Plant Sciences.

Additional information