Skip to main content

Molecular Microbiology of Heavy Metals

  • Book
  • © 2007

Overview

  • Tracks recent progress in understanding metal-microbe interactions
  • Presents a molecular systems theoretical approach as well as results that may lead to the level of real mechanistic understanding
  • With contributions written by internationally renowned scientists
  • Includes supplementary material: sn.pub/extras

Part of the book series: Microbiology Monographs (MICROMONO, volume 6)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (17 chapters)

  1. Molecular Physiology of Metal-Microbe Interactions According to Mechanisms

  2. Molecular Physiology of Metal-Microbe Interactions According to Groups

Keywords

About this book

All forms of life depend on a variety of heavy metal ions. Nearly one-third of all gene products require a metal ion for proper folding or function. However, even metals generally regarded as non-poisonous are toxic at higher concentrations, including the essential ones. Thus, sensitive regulation of metal uptake, storage, allocation and detoxification is needed to maintain cellular homeostasis of heavy metal ions.

Molecular Microbiology of Heavy Metals includes chapters on allocation of metals in cells, metal transporter, storage and metalloregulatory proteins, cellular responses to metal ion stress, transcription of genes involved in metal ion homeostasis, uptake of essential metals, metal efflux and other detoxification mechanisms. Also discussed are metal bioreporters for the nanomolar range of concentration and tools to address the metallome. Chapters in the second part cover specific metals such as Fe, Mn, Cu, Ni, Co, Zn and Mo as key nutrient elements and Ag, As, Cd, Hg and Cr as toxic elements.

Bibliographic Information

Publish with us