Logo - springer
Slogan - springer

Life Sciences - Forestry | Computer Applications in Sustainable Forest Management - Including Perspectives on Collaboration

Computer Applications in Sustainable Forest Management

Including Perspectives on Collaboration and Integration

Series: Managing Forest Ecosystems, Vol. 11

Shao, Guofan, Reynolds, Keith M. (Eds.)

2006, XXI, 277 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$219.00

(net) price for USA

ISBN 978-1-4020-4387-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$279.00

(net) price for USA

ISBN 978-1-4020-4305-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$279.00

(net) price for USA

ISBN 978-90-481-7102-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This book presents state-of-the-art computer applications in a variety of specialty areas of forestry, including inventory, remote sensing, information management, modelling and visualization, biometrics, forest and harvest planning, bioeconomics and marketing, and decision science for management.

The book emphasizes integration, or collaborative use, of computer technologies across different disciplines through interdisciplinary research and development in North America, China, and Europe. It also offers important new insights on how to continue advancing computational technologies in forest management to better achieve the basic goal of sustainable forest management. Case studies demonstrate integration of, or collaboration among, multiple computer applications for sustainable forest management.

This book will be a valuable technical resource for resource managers, planners, administrators, researchers, educators, graduate students, and senior undergraduate students in the field of forestry.

Content Level » Research

Keywords » 3D - Forestry - Marketing - Sustainable forest management - artificial neural network - computer simulation - development - forest - fuzzy - information management - information system - optimization - simulation

Related subjects » Environmental Management - Forestry - Information Systems and Applications - Nature Conservation & Biodiversity - Systems Biology and Bioinformatics

Table of contents 

Contributing authors. Preface. Part I: Introduction. 1. Introduction. 1.1 What is digital forestry? 1.2 Contemporary computer applications in forestry. 1.2.1 Remote sensing 1.2.2 Geographic information systems. 1.2.3 Modeling and simulation. 1.2.4 Visualization. 1.2.5 Decision making. 1.3. Overview of chapters. 1.4. Goals and objectives of this volume.- Part II: Core technologies. 2. High-spatial-resolution remote sensing. 2.1 Introduction.2.2 Tree delineation approaches. 2.2.1 Local-maxima approaches. 2.2.2 Boundary-seeking approaches. 2.2.3 Region-based segmentation. 2.2.4 Template matching. 2.2.5 Model-based approach in 3D. 2.3 Identifying species. 2.3.1 Spectral features and tree polygons. 2.3.2 Spatial features. 2.3.3 Temporal information for classification. 2.4 Developing stand maps. 2.5 Tree health. 2.6 Future directions and issues.- 3. Active remote sensing. 3.1 Introduction 3.2 Active, high-resolution airborne remote sensing technologies for precision forestry. 3.3 Principles of airborne laser scanning. 3.4 Lidar terrain mapping in forested areas. 3.5 Lidar for forest inventory applications. 3.6 Principles of interferometric synthetic aperture radar. 3.7 IFSAR Terrain mapping in forested areas. 3.8 Multi-frequency IFSAR for forest inventory applications. 3.9 Conclusions.- 4. Forest information systems. 4.1 Introduction. 4.2 The nature of information. 4.3 The nature of forest information systems. 4.4 A typology of forest information systems. 4.4.1 Monitoring and control systems. 4.4.2 Conventional information systems. 4.4.3 Evaluation and analysis systems. 4.4.4 Decision-support systems. 4.4.5 Integrated information systems. 4.5 Methodological components of information systems. 4.5.1 Database systems and geographic information systems. 4.5.2 Knowledge-based systems. 4.5.3 Modeling and simulation. 4.5.4 User interfaces and software ergonomics. 4.5.5 Computer graphicsand visualization. 4.5.6 Artificial neural networks and fuzzy logic. 4.5.7 Integration. 4.5.8 Other relevant methods. 4.6 Conclusions.- 5. Road and harvesting planning and operations. 5.1 Introduction. 5.2 Forest road design and location planning. 5.3 Harvest planning. 5.4 Harvesting operations. 5.4.1 Computer simulation. 5.4.2 Real-time decision making – optimizing in-woods log processing. 5.5 Road operations. 5.6 Concluding comments.- 6. Forest simulation models. 6.1 Introduction. 6.2 Forest simulation models. 6.2.1 Forest growth and yield models. 6.2.2 Forest succession models (gap models). 6.2.3 Forest process-based models. 6.2.4 Hybrid models. 6.3. Application of forest simulation models: Four case studies in Canada. 6.3.1 Case I: Red pine (Pinus resinosa) density management diagram for Ontario. 6.3.2 Case II: Simulating effects of climate change on species composition of boreal ecosystem using FORSKA 2.0. 6.3.3 Case III: Simulating effect of climate change and fire disturbances on carbon dynamics of boreal forests using CENTURY 4.0. 6.3.4 Case IV: Predicting forest growth and yield of boreal forests in Northern Ontario using TRIPLEX1.0. 6.4 Challenges and directions. 6.4.1 Modeling ecosystem sustainability. 6.4.2 Diversified forest modeling approaches.- 7. Visualization with spatial data. 7.1 Introduction. 7.2 Visualization techniques. 7.3 Contemporary 3D visualization. 7.4 Visualization in forest planning. 7.4.1 Application areas of visualization tools. 7.4.2 Spatial data and visualization. 7.5 Examples of visualization. 7.6 Concluding remarks. 8. Computer-aided decision making. 8.1 Introduction. 8.2 Mathematical programming. 8.3 Expert systems. 8.4 Network-based models. 8.4.1 Artificial neural networks. 8.4.2 Bayesian belief networks. 8.4.3 Fuzzy logic networks. 8.5 Multicriteria methods. 8.5.1 Multi-attribute utility theory. 8.5.2 Analytic hierarchy process.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Forestry.