Logo - springer
Slogan - springer

Life Sciences - Cell Biology | Recombination and Meiosis - Crossing-Over and Disjunction

Recombination and Meiosis

Crossing-Over and Disjunction

Egel, Richard, Lankenau, Dirk-Henner (Eds.)

2008, XV, 365 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-540-75373-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-75371-1

free shipping for individuals worldwide

The book title is in reprint. You can already preorder it.

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-642-09459-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • First book to give a detailed insight in the processes and mechanisms taking place in the cell during meiosis and recombination
  • Written by high-impact authors from the field

Once per life cycle, mitotic nuclear divisions are replaced by meiosis I and II – reducing chromosome number from the diploid level to a haploid genome, reshuffling the homologous chromosomes by their centromeres, and recombining chromosome arms by crossing-over. In animals, including humans, all this happens during the germ cell formation of eggs and sperm. Due to the reign of meiosis, no child is a true genetic copy of either parent. Central to mainstream meiosis, the mechanisms of reciprocal exchange at crossover/chiasma sites stand out as a controlled program of biologically significant molecular changes. To initiate the meiotic exchange of DNA, surgical cuts are made as a form of calculated damage that is subsequently repaired by homologous recombination. These key events are accompanied by ancillary provisions at the level of chromosome core organization, sister chromatid cohesion, and differential centromere connectivity. Great progress has been made in recent years to further our understanding of these mechanisms. Questions still open primarily concern the placement of and mutual coordination between neighboring crossover events. The current book addresses these processes and mechanisms in multicellular eukaryotes, such as Drosophila, Arabidopsis, mice and humans. The pioneering model systems of yeasts, as well as evolutionary aspects, will be addressed in a forthcoming volume.

Content Level » Research

Keywords » Chromosom - Chromosome Dysjunction - DNA - DNA Double Strand Breaks - Homolog Synapsis - Meiosis - eukaryote - evolution - recombination - regulation

Related subjects » Animal Sciences - Biochemistry & Biophysics - Cell Biology - Human Genetics - Plant Sciences

Table of contents 

Meiotic Crossing-Over and Disjunction: Overt and Hidden Layers of Description and Control.- Chromatid Cores in Meiotic Chromosome Structure and Segregation.- Sister Chromatid Cohesion and Centromere Organization in Meiosis.- Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis.- Synapsis, Double-Strand Breaks, and Domains of Crossover Control in Drosophila Females.- Synaptic and Recombination Nodules in Mammals: Structural Continuity with Shifting Protein Composition.- Human Recombination Hotspots: Before and After the HapMap Project.- Meiotic Nondisjunction—The Major Cause of Trisomy 21.- Meiosis in Arabidopis thaliana: Recombination, Chromosome Organization and Meiotic Progression.- Modified Cell Cycle Regulation in Meiosis.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Cell Biology.