Logo - springer
Slogan - springer

Life Sciences - Biochemistry & Biophysics | Molecular Biomineralization - Aquatic Organisms Forming Extraordinary Materials

Molecular Biomineralization

Aquatic Organisms Forming Extraordinary Materials

Müller, W.E.G. (Ed.)

2011, XII, 404 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$169.00

(net) price for USA

ISBN 978-3-642-21230-7

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$219.00

(net) price for USA

ISBN 978-3-642-21229-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$219.00

(net) price for USA

ISBN 978-3-642-27118-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Written by leading experts in the field
  • State-of-the-art overview of all aspects of biomineralization
  • Includes outlook on future applications
The concept of ‘biomineralization’ signifies mineralization processes that take place in close association with organic molecules or matrices. The awareness that mineral formation can be guided by organic molecules notably contributed to the understanding of the formation of the inorganic skeletons of living organisms. Modern electron microscopic and spectroscopic analyses have successfully demonstrated the participation of biological systems in several mineralization processes, and prominent examples include the formation of bio-silica in diatoms and sponges. This insight has already made the application of recombinant technology for the production of valuable inorganic polymers, such as bio-silica, possible. This polymer can be formed by silicatein under conditions that cannot be matched by chemical means. Similarly, the efforts described in this book have elucidated that certain organisms, bacteria in deep-sea polymetallic nodules and coccoliths in seamount crusts, are involved in the deposition of marine minerals. Strategies have already been developed to utilize such microorganisms for the biosynthesis and bioleaching of marine deposits. Moreover, studies reveal that bio-polymers enhance the hydroxyapatite formation of bone-forming cells and alter the expression of important regulators of bone resorption, suggesting a potential for bone regeneration and treatment / prevention of osteoporosis.

Content Level » Research

Keywords » Bio-silica - Biocalcification - Biomaterials - Biomineralization - Crustaceans - Echinoderms - Osteoporosis - Porifera

Related subjects » Biochemistry & Biophysics - Biomaterials - Biotechnology - Ecology - Molecular Medicine

Table of contents 

Magnetite Biomineralization in Bacteria.- Maxi and Mini Ferritins: Minerals and Protein Nanocages.- Manganese Oxidation by Bacteria: Biogeochemical Aspects.- Molecular Biomineralization: Towards an Understanding of the Biogenic Origin of Polymetallic Nodules, Seamount Crusts and Hydrothermal Vents.- Molecular basis of bacterial calcium carbonate precipitation.- Principles of calcium-based biomineralization.- Molecular Aspects of Biomineralization of the Echinoderm Endoskeleton.- Echinoderms as blueprints for biocalcification: regulation of skeletogenic genes and matrices.- The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.- Biosilica-based strategies for treatment of osteoporosis and other bone diseases.- Structure and function of matrix proteins and peptides in the biomineral formation in crustaceans.- Molecular Approaches to Understand Biomineralization of Shell Nacreous Layer.- Acidic shell proteins of the Mediterranean fan mussel Pinna nobili.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Animal Biochemistry.