Logo - springer
Slogan - springer

Life Sciences - Animal Sciences | Targeted Genome Editing Using Site-Specific Nucleases - ZFNs, TALENs, and the CRISPR/Cas9 System

Targeted Genome Editing Using Site-Specific Nucleases

ZFNs, TALENs, and the CRISPR/Cas9 System

Yamamoto, Takashi (Ed.)

2015, VIII, 205 p. 45 illus., 33 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


ISBN 978-4-431-55227-7

digitally watermarked, no DRM

The eBook version of this title will be available soon

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-4-431-55226-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Equips readers with a basic understanding of genome editing methods, allowing for further developments in the field
  • Provides detailed methods for generation of engineered nucleases
  • Describes applications of genome editing methods in various organisms and in stem cells

This book serves as an introduction to targeted genome editing, beginning with the background of this rapidly developing field and methods for generation of engineered nucleases. Applications of genome editing tools are then described in detail, in iPS cells and diverse organisms such as mice, rats, marine invertebrates, fish, frogs, and plants. Tools that are mentioned include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9, all of which have received much attention in recent years as breakthrough technologies. Genome editing with engineered nucleases allows us to precisely change the target genome of living cells and is a powerful way to control functional genes. It is feasible in almost all organisms ranging from bacteria to plants and animals, as well as in cultured cells such as ES and iPS cells. Various genome modifications have proven successful, including gene knockout and knock-in experiments with targeting vectors and chromosomal editing. Genome editing technologies hold great promise for the future, for example in biomedical research, clinical medicine, and generation of crops and livestock with desirable traits. A wide range of readers will find this book interesting, and with its focus on applications in a variety of organisms and cells, the book will be valuable for life scientists in all fields.

Content Level » Research

Keywords » CRISPR/Cas9 - Gene disruption - Gene knockout - Genome editing - Knock-in - TALEN - Targeted insertion - ZFN - iPS

Related subjects » Animal Sciences - Cell Biology - Evolutionary & Developmental Biology - Plant Sciences

Table of contents 

Preface.- Part 1 Basics of Genome Editing.- 1 Genome Editing Using Zinc-Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs) (Hiroshi Ochiai and Takashi Yamamoto)-. 2 CRISPR/Cas9: The Leading Edge of Genome Editing Technology (Tetsushi Sakuma and Takashi Yamamoto)-. Part 2 Genome Editing in Cultured Cells and Various Organisms.- 3 Editing in Cultured Human Cells: From Cell Lines to iPS Cells (Hongmei Lisa Li and Akitsu Hotta)-. 4 Genome Editing in Nematode (Takuma Sugi)-. 5 Highly Efficient Targeted Gene Disruption in the Silkworm, Bombyx mori, Using Genome Editing Tools (Takaaki Daimon)-. 6 Genome Editing in Sea Urchin (Naoaki Sakamoto)-. 7 Genome Editing in Ascidians (Nicholas Treen and Yasunori Sasakura)-. 8 Genome Editing in Zebrafish and Medaka (Atsuo Kawahara, Taijiro Yabe, Satoshi Ansai, Shinji Takada, and Masato Kinoshita)-. 9 Genome Editing Using Site-Specific Nucleases in Amphibians (Ken-ichi T. Suzuki and Toshinori Hayashi)-. 10 Genome Editing in Mice Using CRISPR/Cas  (Samantha AM Young, Mark Baker, and Masahito Ikawa)-. 11 Genome Editing in Mice Using TALENs (Tomomi Aida)-. 12 Engineered Nucleases Lead to Genome Editing Revolution in Rats (Kazuto Yoshimi, Takehito Kaneko, Birger Voigt, and Tomoji Mashimo)-. 13 Genome Editing in Higher Plants (Yuriko Osakabe and Keishi Osakabe).

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Transgenics.