Skip to main content

Predictability of Chaotic Dynamics

A Finite-time Lyapunov Exponents Approach

  • Book
  • © 2017

Overview

  • Authored by leading researchers in the field
  • Self-contained introduction and presentation
  • Includes a number of worked-out examples

Part of the book series: Springer Series in Synergetics (SSSYN)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems.

With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and importance. This reliability is directly related to the regularity and instability properties of the modeled flow. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation.

This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field of nonlinear dynamics, with a focus on the finite-time Lyapunov exponents approach. The method is illustrated using a number of well-known continuous dynamical systems, including the Contopoulos, Hénon-Heiles and Rössler systems. To help students and newcomers quickly learn to apply these techniques, the appendix provides descriptions of the algorithms used throughout the text and details how to implement them in order to solve a given continuous dynamical system.

Authors and Affiliations

  • Department of Physics, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain

    Juan C. Vallejo, Miguel A. F. Sanjuan

About the authors

Miguel Sanjuan is full professor of physics at the Universidad Rey Juan Carlos in Madrid, Spain, where he founded the Physics Department in 2006. He is a corresponding member of the Spanish Royal Academy of Sciences, section physics and chemistry, and a foreign member of the Lithuanian Academy of Sciences in the areas of physics and mechanical engineering. Prof. Sanjuan is presently the head of the Nonlinear Dynamics, Chaos and Complex Systems Research Group at the Universidad Rey Juan Carlos.He has published the monograph Nonlinear Resonances (Springer,2015). 


Juan C. Vallejo is an astrophysicist working as BepiColombo SGS Software Development Team Leader for the GMV enterprise group at the European Space Astronomy Centre in Madrid. At the same time he collaborates with the Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Fisica, Universidad Rey Juan Carlos.

Bibliographic Information

Publish with us