Skip to main content
Book cover

Modelling Protocells

The Emergent Synchronization of Reproduction and Molecular Replication

  • Book
  • © 2017

Overview

  • Provides a unitary approach to protocell models
  • Includes a brief discussion on the role of quantum coherent states in the origin of life
  • Written by the Chairman of the Science Board of the European Centre for Living Technology
  • Includes supplementary material: sn.pub/extras

Part of the book series: Understanding Complex Systems (UCS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

The monograph discusses models of synthetic protocells, which are cell-like structures obtained from non-living matter endowed with some rudimentary kind of metabolism and genetics, but much simpler than biological cells. They should grow and proliferate, generating offsprings that resemble in some way the parent protocells with some variation, so that selection may take place. Sustainable protocell populations have not yet been obtained experimentally and mathematical models are therefore extremely important to address key questions concerning their synthesis and behavior. Different protocell “architectures” have been proposed and high-level abstract models like those that are presented in this book are particularly relevant to gain a better understanding of the different properites. These models are able to treat all the major dynamical phenomena in a unified framework, so they can be seen as “virtual laboratories” for protocell research. Particular attention is paid to the problem of synchronization of the fission rate of the whole protocell and the duplication rate of its "protogenetic" material, which is shown to be an emergent property that spontaneously develops in successive generations.


The book is of interest for a broad range of scientists working in soft matter physics, chemistry and biology, interested in the role protocells may play on the development of new technologies with medical, environmental and industrial applications as well as scientists interested in the origin of life.

Authors and Affiliations

  • Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy

    Roberto Serra

  • Department of Physics, Informatics and Mathematics, University of Modena & Reggio Emilia , Modena, Italy

    Marco Villani

About the authors

Roberto Serra is full professor of Complex Systems at the University of Modena and Reggio Emilia. He has previously been the Head of the Environmental Research Centre of the Montedison industrial group, the President of the Italian Association for Artificial Intelligence AI*IA and the Chairman of the Science Board of the European Centre for Living Technology. His main research interests, besides protocells, concern the dynamical modelling of Complex Systems, with applications to gene regulatory networks and cell differentiation, the analysis of their organization and the dynamical systems approach to Artificial Intelligence. He is the author or editor of eight books and of about 160 papers in international journals and conference proceedings with peer review.  


Marco Villani is associate professor of Computer Science at the University of Modena and Reggio Emilia and a fellow of the European Centre for Living Technology. His main research interests, besides protocells, concern the dynamical modelling of Complex Systems, with applications to gene regulatory networks and cell differentiation, the analysis of their organization and the simulation of social systems. He is the editor of three books and of about 100 papers in international journals and conference proceedings with peer review.

Bibliographic Information

Publish with us