Green Chemistry and Sustainable Technology

Molecular Devices for Solar Energy Conversion and Storage

Editors: Tian, Haining, Boschloo, Gerrit, Hagfeldt, Anders (Eds.)

  • Covers solar cells, solar fuels (water splitting/carbon dioxide reduction), solar flow batteries, solar capacitors, and solar energy-thermal energy techniques
  • Demonstrates the working principle and molecule design of different molecular devices
  • Introduces important techniques for the characterization and evaluation of the molecular devices
  • Discusses the stability of perovskite solar cells
see more benefits

Buy this book

eBook 166,59 €
price for India (gross)
  • ISBN 978-981-10-5924-7
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 199,99 €
price for India (gross)
  • ISBN 978-981-10-5923-0
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

This book shows the different molecular devices used for solar energy conversion and storage and the important characterization techniques for this kind of device. It has five chapters describing representative molecule-based solar cells, such as organic solar cells, dye-sensitized solar cells and hybrid solar cells (perovskite solar cell and quantum dots solar cells). It also includes two chapters demonstrating the use of molecular devices in the areas of solar fuel, water splitting and carbon dioxide reduction. There are further two chapters with interesting examples of solar energy storage related devices, like solar flow battery, solar capacitor and solar energy-thermal energy storage. Three chapters introduce important techniques used to characterize, investigate and evaluate the mechanism of molecular devices. The final chapter discusses the stability of perovskite solar cells. This book is relevant for a wide readership, and is particularly useful for students, researchers and industrial professionals who are working on molecular devices for solar energy utilization.

About the authors

Haining Tian obtained his doctorate from Dalian University of Technology (China) in 2009. Then he joined Prof. Licheng Sun’s group as a postdoc/researcher in KTH Royal Institute of Technology, Sweden, from 2009-2014. During that period, he also spent two months as a visiting researcher at Universitat Jaume I, Spain. In 2014, he joined the  Physical Chemistry department at Uppsala University as an assistant professor. In 2016, he became associate professor (Docent). His research interests mainly focus on molecular solar cells and solar fuel devices, particularly on functional organic/inorganic materials synthesis, photoelectrode fabrication, water splitting, carbon dioxide reduction and photosynthesis of organic chemicals. He has published over 50 peer-reviewed articles concentrating on molecular devices for solar energy conversion.

Gerrit Boschloo received his PhD in 1996 from Delft University of Technology, the Netherlands. He pursued postdoctoral research at University College Dublin, Ireland, and at Uppsala University, Sweden. After a research period at the Royal Institute of Technology (Stockholm, Sweden), he is currently an associate professor of Physical Chemistry at Uppsala University. His research focuses on photoelectrochemistry of semiconductors and molecular devices, specifically on dye-sensitized solar cells and perovskite solar cells. He has authored and coauthored over 160 peer-reviewed articles in leading journals.

Anders Hagfeldt is a professor of Physical Chemistry at EPFL, Switzerland. He obtained his Ph.D. at Uppsala University in 1993 and was a post-doc with Prof. Michael Grätzel (1993-1994) at EPFL, Switzerland. His research focuses on the mesoporous dye-sensitized solar cells, specifically on the physical and chemical characterization of mesoporous electrodes for different types of optoelectronic devices. He has published more than 400 scientific papers that have received over 40,000 citations (with an h-index of 100), and holds 8 patents. He was ranked number 46 on a list of the top 100 material scientists of the past decade by Times Higher Education. From 2014 to 2016 he was on Thomson Reuter’s list of Highly Cited Researchers, i.e. among the top 1% most cited in chemistry. He is a member of the Royal Swedish Academy of Sciences, European Academy of Sciences, Royal Society of Sciences in Uppsala, and the Royal Swedish Academy of Engineering Sciences. He is a visiting professor at Uppsala University, Sweden, and Nanyang Technological University, Singapore.

Table of contents (13 chapters)

  • Small Molecule Solar Cells

    Moench, Tobias (et al.)

    Pages 1-43

    Preview Buy Chapter 24,95 €
  • Polymer Solar Cells

    Jiang, Youyu (et al.)

    Pages 45-108

    Preview Buy Chapter 24,95 €
  • Liquid Dye-Sensitized Solar Cells

    Tian, Haining (et al.)

    Pages 109-149

    Preview Buy Chapter 24,95 €
  • Solid-State Dye-Sensitized Solar Cells

    Zhang, Jinbao (et al.)

    Pages 151-185

    Preview Buy Chapter 24,95 €
  • Hybrid Organic/Inorganic and Perovskite Solar Cells

    Fakharuddin, Azhar (et al.)

    Pages 187-227

    Preview Buy Chapter 24,95 €

Buy this book

eBook 166,59 €
price for India (gross)
  • ISBN 978-981-10-5924-7
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover 199,99 €
price for India (gross)
  • ISBN 978-981-10-5923-0
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Molecular Devices for Solar Energy Conversion and Storage
Editors
  • Haining Tian
  • Gerrit Boschloo
  • Anders Hagfeldt
Series Title
Green Chemistry and Sustainable Technology
Copyright
2018
Publisher
Springer Singapore
Copyright Holder
Springer Nature Singapore Pte Ltd.
eBook ISBN
978-981-10-5924-7
DOI
10.1007/978-981-10-5924-7
Hardcover ISBN
978-981-10-5923-0
Series ISSN
2196-6982
Edition Number
1
Number of Pages
XIV, 531
Number of Illustrations and Tables
79 b/w illustrations, 182 illustrations in colour
Topics