Skip to main content
Book cover

Optical and Electronic Process of Nano-Matters

  • Book
  • © 2001

Overview

Part of the book series: Advances in Opto-Electronics (ADOP, volume 8)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

Sizes of electronic and photonic devices are decreasing drastically in order to increase the degree of integration for large-capacity and ultrahigh­ speed signal transmission and information processing. This miniaturization must be rapidly progressed from now onward. For this progress, the sizes of materials for composing these devices will be also decreased to several nanometers. If such a nanometer-sized material is combined with the photons and/or some other fields, it can exhibit specific characters, which are considerably different from those ofbulky macroscopic systems. This combined system has been called as a mesoscopic system. The first purpose of this book is to study the physics of the mesoscopic system. For this study, it is essential to diagnose the characteristics of miniaturized devices and materials with the spatial resolution as high as several nanometers or even higher. Therefore, novel methods, e.g., scanning probe microscopy, should be developed for such the high-resolution diagnostics. The second purpose of this book is to explore the possibility of developing new methods for these diagnostics by utilizing local interaction between materials and electron, photon, atomic force, and so on. Conformation and structure of the materials of the mesoscopic system can be modified by enhancing the local interaction between the materials and electromagnetic field. This modification can suggest the possibility of novel nano-fabrication methods. The third purpose of this book is to explore the methods for such nano-fabrication.

Editors and Affiliations

  • Tokyo Institute of Technology, Yokohama, Japan

    Motoichi Ohtsu

Bibliographic Information

Publish with us