Skip to main content

Multiphase Hybrid Electric Machines

Applications for Electrified Powertrains

  • Book
  • © 2022

Overview

  • Presents an overview of electrification in the automotive industry
  • Offers step-by-step design procedures for multiphase and hybrid electric machines
  • Provides examples, case studies, and real-world applications

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book provides an insight into the design, modeling, control, and application of multiphase hybrid permanent magnet machines for electrified powertrains in electric and hybrid electric vehicles. The authors present an overview of electric and hybrid electric vehicles, hybrid electric machine topologies, hybrid permanent magnet (HPM) machine design, multiphase hybrid machines, operation of multiphase generators in series hybrid electric vehicles (SHEV), and machine hardware build-up and testing. Readers will gain an understanding of multiphase machine configuration, their design, control, and recent applications, along with the benefits they provide, and learn general design steps, prototyping, and hardware build-up processes of multiphase electric machines. 

Multiphase Hybrid Electric Machines: Applications for Electrified Powertrains will be a valuable reference for undergraduate and graduate students, researchers, and practicing engineers, working on electric/hybrid electric vehicles, as well as electric machine applications in renewable energy systems specifically wind turbines, HVAC systems, robotics, and aerospace industry.

Authors and Affiliations

  • Department of Electrical Engineering Technology, Public Authority for Applied Education and Training (PAAET), College of Technological Studies (CTS), Kuwait City, Kuwait

    Ahmad S. Al-Adsani

  • Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada

    Omid Beik

About the authors

Ahmad S. Al-Adsani received the B.S. (Hons.) degree in electrical power engineering from Gannon University in 1996, the M.S. degree in electrical power engineering from the South Dakota School of Mines and Technology in 2001, and the Ph.D. degree from the University of Manchester in 2011. From 1997 to 1999, he was an Instructor with the Public Authority for Applied Education and Training (PAAET), Kuwait City, before joining the Electrical Engineering Technology Department as an Assistant Lecturer at the College of Technological Studies (CTS) from 2001 to 2007. He was also the Head of the Electrical Unit, College of Basic Education, PAAET from 2003 to 2007. From 2011 to 2021, he was an Assistant Professor, and  currently he is an  Associate Professor with the CTS, PAAET. His research interests include electro-magnetic powertrains for electric and hybrid-electric vehicles, design and control of multiphase electric and hybrid electric machine systems for renewable energy applications. He is a Member of IEEE and a Life Member of the Kuwait Engineering Society. 

Omid Beik received the B.Sc. degree (Hons.) with highest distinction in electrical engineering from Yazd University, Yazd, Iran, in 2007, the M.Sc. degree with highest distinction in electrical engineering from Shahid Beheshti University, Abbaspour School of Engineering, Tehran, Iran, in 2009, and the Ph.D. degree in electrical engineering from McMaster University, Hamilton, ON, Canada, in 2016. He was a Postgraduate Researcher with the Power Conversion Group, University of Manchester, U.K. (2011–2012) and a Postdoctoral Research Fellow at McMaster University, Hamilton, ON, Canada (2016–2017). To-date he has authored/co-authored three books, over thirty-five peer-reviewed articles, and multiple patent applications. Dr. Beik he has held several industrial positions, he is currently an Adjunct Faculty member at the Department of Electrical and Computer Engineering at McMaster University, and serves as an Associate Editor for IEEE Transactions on Energy Conversion, IEEE Transactions on Transportation Electrification, IEEE Power Engineering Letters, and IEEE Electrification eNewesletter. He is a Senior Member of IEEE. His main research is focused on electric machines, drives and power electronics for applications in renewable energy systems, and transportation electrification.



Bibliographic Information

  • Book Title: Multiphase Hybrid Electric Machines

  • Book Subtitle: Applications for Electrified Powertrains

  • Authors: Ahmad S. Al-Adsani, Omid Beik

  • DOI: https://doi.org/10.1007/978-3-030-80435-0

  • Publisher: Springer Cham

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer Nature Switzerland AG 2022

  • Hardcover ISBN: 978-3-030-80434-3Published: 03 September 2021

  • Softcover ISBN: 978-3-030-80437-4Published: 04 September 2022

  • eBook ISBN: 978-3-030-80435-0Published: 02 September 2021

  • Edition Number: 1

  • Number of Pages: X, 226

  • Number of Illustrations: 91 b/w illustrations, 71 illustrations in colour

  • Topics: Automotive Engineering, Electrical Engineering, Renewable and Green Energy, Engine Technology, Engineering Design

Publish with us