Skip to main content
Book cover

Phase-Integral Method

Allowing Nearlying Transition Points

  • Book
  • © 1996

Overview

Part of the book series: Springer Tracts in Natural Philosophy (STPHI, volume 40)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

  1. Phase-Integral Approximation of Arbitrary Order Generated from an Unspecified Base Function

  2. Technique of the Comparison Equation Adapted to the Phase-Integral Method

  3. Adjoined Papers

Keywords

About this book

The efficiency of the phase-integral method developed by the present au­ thors has been shown both analytically and numerically in many publica­ tions. With the inclusion of supplementary quantities, closely related to new Stokes constants and obtained with the aid of comparison equation technique, important classes of problems in which transition points may approach each other become accessible to accurate analytical treatment. The exposition in this monograph is of a mathematical nature but has important physical applications, some examples of which are found in the adjoined papers. Thus, we would like to emphasize that, although we aim at mathematical rigor, our treatment is made primarily with physical needs in mind. To introduce the reader into the background of this book, we start by de­ scribing the phase-integral approximation of arbitrary order generated from an unspecified base function. This is done in Chapter 1, which is reprinted, after minor changes, from a review article. Chapter 2 is the result of re­ search work that was pursued during more than two decades, interrupted at times. It started in the sixties, when we were still using a phase-integral approximation, which in our present terminology corresponds to a special choice of the base function. At the time our primary aim was to derive expressions for the supplementary quantities needed in order to obtain an accurate connection formula for a real potential barrier, when the energy lies in the neighborhood of the top of the barrier.

Authors and Affiliations

  • Department of Theoretical Physics, University of Uppsala, Uppsala, Sweden

    Nanny Fröman, Per Olof Fröman

Bibliographic Information

Publish with us