Skip to main content

Partial Differential Equations and Group Theory

New Perspectives for Applications

  • Book
  • © 1994

Overview

Part of the book series: Mathematics and Its Applications (MAIA, volume 293)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 16.99 USD 39.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

Ordinary differential control thPory (the classical theory) studies input/output re­ lations defined by systems of ordinary differential equations (ODE). The various con­ cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re­ cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con­ cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ­ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the­ ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.

Authors and Affiliations

  • Centre de Recherche en Mathématiques Appliquées (CERMA), Ecole Nationale des Ponts et Chausées (ENPC), Noisy-le-Grand, France

    J.-F. Pommaret

Bibliographic Information

Publish with us