Logo - springer
Slogan - springer

Environmental Sciences - Environmental Management | Multi-Source National Forest Inventory - Methods and Applications

Multi-Source National Forest Inventory

Methods and Applications

Series: Managing Forest Ecosystems, Vol. 18

Tomppo, E., Haakana, M., Katila, M., Peräsaari, J.

2008, XIII, 373 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4020-8713-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4020-8712-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-90-481-7964-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Includes fully updated details of the k-NN method and its applications
  • Author Erkki Tomppo won the 1997 Marcus Wallenberg prize for the initial development of this method
  • K-NN method is in operative use in Finland, Sweden, the U.S., and Austria, and is rapidly becoming the "world standard" in forest inventory and earth observation

Building on more than a decade of innovative research into multi-source forest inventory (MS-NFI) this book presents full details of the development, outputs and applications of the improved k-NN method. The method, which was pioneered in Finland in 1990, is rapidly becoming a world standard in forest inventory, having been adopted as standard in Finland and Sweden, and recently introduced in Austria and across the US.

The book describes in detail the full MS-NFI process, and the input data used – including field data, satellite images, and digital map data, as well as coarse-scale variation of forest variables. It also presents comprehensive information on the types of outputs which can be derived, including maps and statistics, describing, for example, stock volumes and development, dominant tree species, age-class distribution, and large and small-scale variation.

The book will provide an invaluable resource for those involved in forest inventory, including government departments and bodies involved in forest policy, management and monitoring, forest managers, and researchers and graduate students interested in forest inventory, modelling and analysis. It will find an additional market among those interested in Earth observation, ecology and broader areas of environmental and natural resource management.

Erkki Tomppo was the winner of the 1997 Marcus Wallenberg Prize for his work on the k-NN method.

Content Level » Research

Keywords » Earth observation - Environmental research management - Forest inventory - Forest policy and managent - ecology - forest - forest policy

Related subjects » Environmental Management - Forestry - Geographical Information Systems - Monitoring & Environmental Analysis

Table of contents 

List of abbreviations.- Preface.-

1. Introduction.-

2. Materials. 2.1 Field data. 2.1.1 Sampling designs. 2.1.2 Measurements and assessments on field sample plots and plot stands. 2.2 Satellite images. 2.2.1 The applied satellite images. 2.2.2 Landsat 5 TM. 2.2.3 Landsat 7 ETM. 2.2.4 IRS-1C and IRS-1D. 2.3 Digital map data. 2.3.1 The use of the map data. 2.3.2 The main sources of map data. 2.3.3 Peatland. 2.3.4 Arable land. 2.3.5 Urban areas, houses and other built-up areas. 2.3.6 Roads. 2.3.7 Water. 2.3.8 Accuracy of the combined land use map data. 2.3.9 Digital boundaries of the computation units. 2.4 Digital elevation model. 2.5 Large area forest resource data.-

3. Methods. 3.1 Image rectification and pre-processing of data. 3.1.1 Satellite image rectification. 3.1.2 Radiometric correction by means of digital elevation model. 3.1.3 Preparation of input data sets. 3.2 Estimation. 3.2.1 Field data based estimation and reliability analysis. Estimation and error estimation based on the field plot data. 3.2.2 The basic k-NN estimation method. 3.2.3 The improved k-NN (ik-NN) method, use of coarse scale forest variable estimates and genetic algorithm in the distance metric. Simplified sketch of the genetic algorithm. The application of the algorithm. 3.2.4 Selecting estimation parameters and their values for k-NN. 3.2.5 Area and volume estimates – stratification, correction for map errors. Calibrated MS-NFI estimators. Stratified MS-NFI. Calibration of the MS-NFI municipality estimates to the official land areas. 3.2.6 Assessing the errors – current and potential methods. The current methods in assessing the reliability of the results. Model-based error estimation.-

4. Results. 4.1 Forest resources by municipalities. 4.2 Comparison of the results by regions and to MS-NFI8 results. 4.2.1 Variables in the comparison. 4.2.2 Mean volume of growing stock. 4.2.3 Dominant tree species. 4.2.4 Age class distribution on forest land. 4.2.5 Distribution of development classes. 4.2.6 Available energy wood. 4.3 Accuracy of small-area estimates from MS-NFI8 and MS-NFI9. 4.3.1 Empirical errors of MS-NFI9 small-area estimates based on independent inventory data. 4.3.2 Assessing the systematic errors of the MS-NFI8 and MS-NFI9 municipality estimates. 4.4 Digital thematic output maps.-

5. Discussion.-

Acknowledgements.- References.-

Appendix 1. Forest resource tables 1–8.-

Appendix 2. Examples of forest resource maps.-


Distribution rights 

Distribution rights for India: Atlantic Pub. & Distr. (P) Ltd., New Delhi, India

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Environmental Management.