Logo - springer
Slogan - springer

Engineering - Robotics | PID Control for Multivariable Processes

PID Control for Multivariable Processes

Wang, Q.-G., Ye, Z., Cai, W.-J., Hang, C.-C.

2008

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-3-540-78482-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-3-540-78481-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Provides a comprehensive, up-to-date and detailed examination of PID control for multivariable
  • Covers processes, from paring, gain and phase margins, to various design methods and applications
Thereare richtheories and designs for generalcontrolsystems,but usually, they will not lead to PID controllers. Noting that the PID controller has been the most popular one in industry for over ?fty years, we will con?ne our discussion hereto PIDcontrolonly. PID controlhasbeenanimportantresearchtopicsince 1950’s, and causes remarkable activities for the last two decades. Most of the existing works have been on the single variable PID control and its theory and design are well established, understood and practically applied. However, most industrial processes are of multivariable nature. It is not rare that the overall multivariable PID control system could fail although each PID loop may work well. Thus,demandforaddressingmultivariableinteractionsishighforsuccessful applicationofPIDcontrolinmultivariableprocessesanditisevidentfrommajor leading control companies who all rankedthe couplings of multivariable systems as the principal common problem in industry. There have been studies on PID control for multivariable processes and they provide some useful design tools for certaincases. But itis notedthat the existing worksaremainlyfor decentralized form of PID control and based on ad hoc methodologies. Obvious, multivariable PID control is much less understood and developed in comparison with the single variable case and actual need for industrial applications. Better theory and design have to be established for multivariable PID control to reach the same maturity and popularity as the single variable case. The present monograph puts together, in a single volume, a fairly comp- hensive, up-to-date and detailed treatment of PID control for multivariable p- cesses, from paring, gain and phase margins, to various design methods and applications.

Content Level » Research

Keywords » Multi-Ioop PID Control - Multivariable PID Control - PID Control - control - control theory

Related subjects » Applications - Robotics

Table of contents 

Loop Pairing Analysis.- Loop Gain Margins and Stabilizing PID Ranges.- Loop Phase Margins.- Multi-loop PID Control Based on dRI Analysis.- Multivariable PID Control Based on Dominant Pole Placement.- Optimal Multivariable PID Control Based on LMI Approach.- Multivariable PID Control for Synchronization.- Multivariable Process Identification.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Control , Robotics, Mechatronics.