Logo - springer
Slogan - springer

Engineering - Mechanical Engineering | Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies

Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies

Staicovici, Mihail-Dan

2014, XXVI, 501 p. 268 illus., 84 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-642-54684-6

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-642-54683-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Presents theory and practical aspects for applications
  • Offers new opportunities for heat pumping and power production
  • Includes many illustrations tables and diagrams supporting the understanding

This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.  

Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given. 

The author presents absorption-related topics, including the divided-device method for mass and heat transfer analysis, and truncation as a unique method for a better source-task match. Along with advanced gax recovery, the first and second principles of COP and exergy calculation, the ideal point approaching (i.p.a.) effect and the two-point theory of mass and heat transfer, the book also addresses the new wording of the Laplace equation, the Marangoni effect true explanation, and the new mass and heat exchangers based on this effect.  

The work goes on to explore coabsorbent separate and combined cooling, heating, and power (CHP) production and advanced water-lithium bromide cycle air-conditioning, as well as analyzing high-efficiency ammonia-water heat-driven heating and industrial low-temperature cooling, in detail.

Readers will learn how coabsorbent technology is based on classic absorption, but is more general. It is capable of offering effective solutions for all cooling and heating applications (industry, agriculture, district, household, etc.), provided that two supplying heat-sink sources with temperatures outdistanced by a minimum of 12-15ºC are available.

This book has clear and concise presentation and illustrates the theory and applications with diagrams, tables, and flowcharts.

Content Level » Research

Keywords » Cooling and Heating Fractals - Depleted Sources Thermal Recovery - Heating Heat Transformer Cycles - Multi-effect Coabsorbent Cycles - Nontruncated and Truncated Coabsorbent Cooling and - Separate or Combined Heat Pumping and Power Production

Related subjects » Classical Continuum Physics - Industrial Chemistry and Chemical Engineering - Mechanical Engineering - Mechanics

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Engineering Thermodynamics, Heat and Mass Transfer.