Logo - springer
Slogan - springer

Engineering - Electronics & Electrical Engineering | HVDC and FACTS Controllers - Applications of Static Converters in Power Systems

HVDC and FACTS Controllers

Applications of Static Converters in Power Systems

Sood, Vijay K.

2004, XXIV, 297 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-1-4020-7891-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4020-7890-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4757-8860-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

HVDC and FACTS Controllers: Applications of Static Converters in Power Systems focuses on the technical advances and developments that have taken place in the past ten years or so in the fields of High Voltage DC transmission and Flexible AC transmission systems. These advances (in HVDC transmission and FACTS) have added a new dimension to power transmission capabilities. The book covers a wide variety of topics, some of which are listed below:

-Current Source and Voltage Source Converters,
-Synchronization Techniques for Power Converters,
-Capacitor Commutated Converters,
-Active Filters,
-Typical Disturbances on HVDC Systems,
-Simulation Techniques,
-Static Var Compensators based on Chain Link Converters,
-Advanced Controllers,
-Trends in Modern HVDC.

In addition to EHV transmission, HVDC technology has impacted on a number of other areas as well. As an example, a chapter dealing with HVDC Light applications is included providing recent information on both on-shore and off-shore applications of wind farms.

Content Level » Professional/practitioner

Keywords » high voltage - interconnect - model - power systems - power transmission - production - simulation - transmission

Related subjects » Electronics & Electrical Engineering

Table of contents 

Preface. Acronyms. 1: Introduction to HVDC Transmission. 1.1. Introduction. 1.2. Comparison of AC-DC Transmission. 1.3. Types of HVDC Systems. 1.4. References. 2: Types of Converters. 2.1. Introduction. 2.2. Current Source Converters (CSC). 2.3. Voltage Source Converters (VSC). 2.4. Closing Remarks. 2.5. References. 3: Synchronization Techniques for Power Converters. 3.1. Introduction. 3.2. Review of GFUs. 3.3. GFUs - Design And Analysis. 3.4. Tests On GFUs. 3.5. EMTP Simulation Of A Test System. 3.6. Conclusions. 3.7. Acknowledgement. 3.8. References. 4: HVDC Controls. 4.1. Historical Background. 4.2. Functions of HVDC Controls. 4.3. Control Basics for a Two-terminal DC Link. 4.4. Current Margin Control Method. 4.5. Current Control at the Rectifier. 4.6. Inverter Extinction Angle Control. 4.7. Hierarchy of Controls. 4.8. Action By Controls After a Disturbance. 4.9. References. 5: Forced Commutated HVDC Converters. 5.1. Introduction. 5.2. Commutation Techniques for HVDC Converters. 5.3. Examples of FC Converters for HVDC Transmission. 5.4. References. 6: Capacitor Commutated Converters for HVDC Systems. 6.1. Capacitor Commutated Converters (CCC). 6.2. Controlled Series Capacitor Converter (CSCC). 6.3. Comparison of CCC and CSCC. 6.4. Garabi Interconnection between Argentina-Brazil. 6.5. Closing Remarks. 6.6. Acknowledgement. 6.7. References. 7: Static Compensators: STATCOM Based on Chain-Link Converters. 7.1. Introduction. 7.2. The Chainlink Converter. 7.3. Advantages of the Chain Circuit STATCOM. 7.4. Design for Production. 7.5. Acknowledgement. 7.6. References. 8: HVDC Systems Using Voltage Source Converters. 8.1. Introduction. 8.2. Basic Elements of HVDC using VSCs. 8.3. Voltage Source Converter. 8.4. Applications. 8.5. Tjaereborg Windpower Project in Denmark. 8.6. Power Supply to Remote Locations (i.e. Islands). 8.7. Asynchronous Inter-Connections. 8.8. Concluding Remarks. 8.9. Acknowledgement. 8.10. References. 9: Active Filters. 9.1. Introduction. 9.2. DC Filters. 9.3. AC Filters. 9.4. Concluding Remarks. 9.5. Acknowledgement. 9.6. References. 10: Typical Disturbances in HVDC Systems. 10.1. Introduction. 10.2. CIGRE Benchmark Model for HVDC Control Studies. 10.3. Details of Control Systems Used. 10.4. Results. 10.5. Closing Remarks. 10.6. Acknowledgement. 10.7. References. 11: Advanced Controllers. 11.1. Introduction. 11.2. Application of an Advanced VDCL Unit. 11.3. Conclusions. 11.4. Acknowledgement. 11.5. References. 12: Measurement/Monitoring Aspects. 12.1. Introduction.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Electrical Engineering.