Logo - springer
Slogan - springer

Engineering - Control Engineering | Design, Modeling and Control of Nanopositioning Systems

Design, Modeling and Control of Nanopositioning Systems

Fleming, Andrew J., Leang, Kam K.

2014, XVI, 411 p. 261 illus., 180 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$139.00

(net) price for USA

ISBN 978-3-319-06617-2

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-319-06616-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Enriches understanding of precision control theory
  • Explains the complete process of nanopositioning control including practical difficulties and their solution
  • Reinforces basic principles with experimental application in atomic force microscope

Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control.

Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (including an appreciation of iterative learning control). Performance issues are given importance as are problems limiting that performance such as hysteresis and noise which arise in the treatment of control and are then given chapter-length attention in their own right. The reader also learns about cost functions and other issues involved in command shaping, charge drives and electrical considerations. All concepts are demonstrated experimentally including by direct application to atomic force microscope imaging.

Design, Modeling and Control of Nanopositioning Systems will be of interest to researchers in mechatronics generally and in control applied to atomic force microscopy and other nanopositioning applications. Microscope developers and mechanical designers of nanopositioning devices will find the text essential reading.

Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Content Level » Research

Keywords » Damping Control - Feed Forward Control - Flexure Design - Hysteresis - Nanopositioning - Piezoelectric Actuators - Position Sensors - Precision Motion Control - Scanning Probe Microscopes - Tracking Control

Related subjects » Control Engineering - Production & Process Engineering - Robotics

Table of contents 

Introduction.- Piezoelectric Transducers.- Types of Nanopositioners.- Mechanical Design: Flexure-based Nanopositioners.- Position Sensors.- Shunt Control.- Feedback Control.- Force Feedback Control.- Feedforward Control.- Command Shaping.- Hysteresis Modeling and Control.- Charge Drives.- Noise in Nanopositioning Systems.- Electrical Considerations.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Control.