Logo - springer
Slogan - springer

Engineering - Control Engineering | Support Vector Machines for Pattern Classification

Support Vector Machines for Pattern Classification

Abe, Shigeo

2nd ed. 2010, XX, 473p. 228 illus., 114 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-84996-098-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-84996-097-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-4471-2548-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • A comprehensive resource for the use of Support Vector Machines (SVMs) in Pattern Classification
  • Takes the unique approach of focusing on classification rather than covering the theoretical aspects of SVMs
  • Includes application of SVMs to pattern classification, extensive discussions on multiclass SVMs, and performance evaluation of major methods using benchmark data sets

Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods.

Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors.

Topics and Features:

  • Clarifies the characteristics of two-class SVMs through extensive analysis
  • Discusses kernel methods for improving the generalization ability of conventional neural networks and fuzzy systems
  • Contains ample illustrations, examples and computer experiments to help readers understand the concepts and their usefulness
  • Includes performance evaluation using publicly available two-class data sets, microarray sets, multiclass data sets, and regression data sets (NEW)
  • Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation (NEW)
  • Covers sparse SVMs, an approach to learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning (NEW)
  • Explores incremental training based batch training and active-set training methods, together with decomposition techniques for linear programming SVMs (NEW)
  • Provides a discussion on variable selection for support vector regressors (NEW)

An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers.

Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison.

Content Level » Research

Keywords » Fuzzy Systems - Kernel Methods - Neural Networks - Pattern Classification - Support Vector Machine - Support Vector Machines - classification

Related subjects » Artificial Intelligence - Control Engineering - Image Processing - Robotics

Table of contents 

Introduction Two-Class Support Vector Machines Multiclass Support Vector Machines Variants of Support Vector Machines Training Methods Kernel-Based Methods Feature Selection and Extraction Clustering Maximum-Margin Multilayer Neural Networks Maximum-Margin Fuzzy Classifiers Function Approximation.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Control.

Additional information