Logo - springer
Slogan - springer

Engineering - Computational Intelligence and Complexity | Growing Adaptive Machines - Combining Development and Learning in Artificial Neural Networks

Growing Adaptive Machines

Combining Development and Learning in Artificial Neural Networks

Kowaliw, Taras, Bredeche, Nicolas, Doursat, René (Eds.)

2014, VII, 261 p. 82 illus., 14 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 

ISBN 978-3-642-55337-0

digitally watermarked, no DRM

The eBook version of this title will be available soon


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-55336-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Recent research in Growing Adaptive Machines
  • Presents development and learning in Artificial Neural Networks
  • Edited results of the DevLeaNN workshop on development and learning in Artificial Neural Networks held in Paris, October 27-28 2012

The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks.

The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the HyperNEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the design of virtual multi-component robots and morphologies, and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines.

This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning.

Content Level » Research

Keywords » Computational Intelligence - Development in Artificial Neural Networks - Growing Adaptive Machines - Learning in Artificial Neural Networks

Related subjects » Artificial Intelligence - Computational Intelligence and Complexity

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computational Intelligence.