Logo - springer
Slogan - springer

Engineering - Computational Intelligence and Complexity | Time Series Analysis, Modeling and Applications - A Computational Intelligence Perspective

Time Series Analysis, Modeling and Applications

A Computational Intelligence Perspective

Pedrycz, Witold, Chen, Shyi-Ming (Eds.)

2013, VIII, 404 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$139.00

(net) price for USA

ISBN 978-3-642-33439-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-33438-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$179.00

(net) price for USA

ISBN 978-3-642-43700-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents the principles and practice of Computational Intelligence in the analysis, design, and interpretation of time series
  • Taking into account the synergy among neurocomputing, fuzzy sets and evolutionary optimization
  • Written by leading experts in the field

Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable).

The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological and algorithmic approaches and case studies.

This volume is aimed at a broad audience of researchers and practitioners engaged in various branches of operations research, management, social sciences, engineering, and economics. Owing to the nature of the material being covered and a way it has been arranged, it establishes a comprehensive and timely picture of the ongoing pursuits in the area and fosters further developments.

Content Level » Research

Keywords » Computational Intelligence - Evolutionary Optimization - Fuzzy Set-based and Granular Models of Time Series - Neural Network Models of Time Series

Related subjects » Artificial Intelligence - Computational Intelligence and Complexity

Table of contents 

From the Contents: The links between statistical and fuzzy models for time series analysis and forecasting.- Incomplete time series: imputation through Genetic Algorithms.- Intelligent aggregation and time series smoothing.- Financial fuzzy Time series models based on ordered fuzzy numbers.- Stochastic-fuzzy knowledge-based approach to temporal data modeling.-A Novel Choquet integral composition forecasting model for time series data based on completed  extensional L-measure.- An application of enhanced knowledge models  to fuzzy time series.- A wavelet transform approach to chaotic short-term forecasting.- Fuzzy forecasting with fractal analysis for the time series of environmental pollution.- Support vector regression with kernel Mahalanobis measure for financial forecast.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computational Intelligence.