Logo - springer
Slogan - springer

Engineering - Computational Intelligence and Complexity | Data Mining: Foundations and Practice

Data Mining: Foundations and Practice

Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (Eds.)

2008

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$279.00

(net) price for USA

ISBN 978-3-540-78488-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$359.00

(net) price for USA

ISBN 978-3-540-78487-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$359.00

(net) price for USA

ISBN 978-3-642-09722-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents foundations and practice of Data Mining

This book contains valuable studies in data mining from both foundational and practical perspectives. The foundational studies of data mining may help to lay a solid foundation for data mining as a scientific discipline, while the practical studies of data mining may lead to new data mining paradigms and algorithms.

The foundational studies contained in this book focus on a broad range of subjects, including conceptual framework of data mining, data preprocessing and data mining as generalization, probability theory perspective on fuzzy systems, rough set methodology on missing values, inexact multiple-grained causal complexes, complexity of the privacy problem, logical framework for template creation and information extraction, classes of association rules, pseudo statistical independence in a contingency table, and role of sample size and determinants in granularity of contingency matrix.

The practical studies contained in this book cover different fields of data mining, including rule mining, classification, clustering, text mining, Web mining, data stream mining, time series analysis, privacy preservation mining, fuzzy data mining, ensemble approaches, and kernel based approaches.

We believe that the works presented in this book will encourage the study of data mining as a scientific field and spark collaboration among researchers and practitioners.

Content Level » Research

Keywords » Statistica - algorithm - algorithms - classification - clustering - complexity - data mining - fuzzy - fuzzy system - information extraction - kernel - probability - text mining - time series analysis - web mining

Related subjects » Artificial Intelligence - Computational Intelligence and Complexity

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Appl. Mathematics / Computational Methods of Engineering.