Logo - springer
Slogan - springer

Engineering - Civil Engineering | Compressive Force-Path Method - Unified Ultimate Limit-State Design of Concrete Structures

Compressive Force-Path Method

Unified Ultimate Limit-State Design of Concrete Structures

Kotsovos, Michael D

2014, XVI, 221 p. 191 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$49.99

(net) price for USA

ISBN 978-3-319-00488-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.99

(net) price for USA

ISBN 978-3-319-00487-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Describes a method suitable not only for designing new earthquake-resistant RC structures but also for the structural assessment and redesign/upgrading of existing RC structures
  • Clearly explains the concepts underlying the method and its application to all common structural elements
  • Presents evidence of the validity of the method plus design examples and comparisons with current code specifications
This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements.
In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.

Content Level » Graduate

Keywords » Design - Earthquake-resistant Structures - Reinforced Concrete Structures - Structural Assessment - Upgrading/Repair/Strengthening

Related subjects » Civil Engineering - Structural Materials

Table of contents / Preface 

Distribution rights 

Distribution rights for India: Delhi Book Store, New Delhi, India

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Building Materials.