Skip to main content

Robust Control of Diesel Ship Propulsion

  • Book
  • © 2002

Overview

Part of the book series: Advances in Industrial Control (AIC)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. As fuel becomes more expensive, as engine technology changes and as marine safety requirements become more stringent there is a continuing need to re­ investigate and re-assess the controller strategies used for marine vessels. Nikolaos Xiros has produced such a contribution in this Advances in Industrial Control monograph on the control of diesel ship propulsion. The monograph is carefully crafted and gives the full engineering and system background before embarking on the modelling stages of the work. The physical system modelling is then used to investigate both transfer function and state space models for the engine dynamics.

Authors and Affiliations

  • Department of Naval Architecture and Marine Engineering, Laboratory of Marine Engineering, National Technical University of Athens, Athens, Greece

    Nikolaos Xiros

Bibliographic Information

Publish with us