Logo - springer
Slogan - springer

Engineering - Circuits & Systems | Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS

Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS

Yao, Libin, Steyaert, Michiel, Sansen, Willy M. C.

2006, XXIV, 158 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-4020-4140-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-4020-4139-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-90-481-7057-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS addresses the low-power low-voltage Sigma-Delta ADC design in nanometer CMOS technologies at both the circuit-level and the system level.

The low-power low-voltage Sigma-Delta modulator design at the circuit level is introduced. A design example is presented in this book. This design is the first published Sigma-Delta design in a 90-nm CMOS technology and reaches a very high figure-of-merit.

At the system level, a novel systematic study on the full feedforward Sigma-Delta topology is presented in this book. As a design example, a fourth-order single-loop full feedforward Sigma-Delta modulator design in a 130-nm pure digital CMOS technology is presented. This design is the first design using the full feedforward Sigma-Delta topology and reaches the highest conversion speed among all the 1-V Sigma-Delta modulators to date.

Content Level » Research

Keywords » CMOS - Switch - Symbol - Transistor - low-power - low-voltage - metrics - nanometer cmos - sigma-delta - tables

Related subjects » Circuits & Systems - Electronics & Electrical Engineering - Mechanical Engineering - Nanotechnology - Signals & Communication

Table of contents 

Abstract Contents List of Tables List of Figures Symbols and Abbreviations Physical Definitions 1 Introduction 1.1 Motivation 1.2 Outline of the work 2 ADCs in Deep-Submicron CMOS Technologies 2.1 Introduction 2.2 Scaling-Down of CMOS Technologies 2.2.1 Driving Force of the CMOS Scaling-Down 2.2.2 Moving Into Deep-Submicron CMOS Technologies 2.3 Impact of Moving Into Deep-Submicron CMOS to Analog Circuits 2.3.1 Decreased Supply Voltage 2.3.2 Impact on Transistor Intrinsic Gain 2.3.3 Impact on Device Matching 2.3.4 Impact on Device Noise 2.4 ADCs In Deep-Submicron CMOS 2.4.1 Decreased Signal Swing 2.4.2 Degraded Transistor Characteristics 2.4.3 Distortion 2.4.4 Switch Driving 2.4.5 Improved Device Matching 2.4.6 Digital Circuits Advantages 2.5 Conclusion 3 Principle of sigma-delta ADC 3.1 Introduction 3.2 Basic Analog to Digital Conversion 3.3 Oversampling and Noise Shaping 3.3.1 Oversampling 3.3.2 Noise Shaping 3.3.3 sigma-delta modulator 3.3.4 PerformanceMetrics for the sigma-delta ADC 3.4 Traditional sigma-delta ADC Topology 3.4.1 Single-Loop Single-Bit sigma-delta Modulators 3.4.2 Single-Loop Multibit sigma-delta Modulators 3.4.3 Cascaded sigma-delta Modulators 3.5 Conclusion 4 Low-Power Low-Voltage sigma-delta ADC Design in Deep-Submicron CMOS: Circuit Level Approach 4.1 Introduction 4.2 Low-Voltage Low-Power OTA Design 4.2.1 Gain Enhanced Current Mirror OTA Design 4.2.2 A Test Gain-Enhanced Current Mirror OTA 4.2.3 Implementation and Measurement Results 4.2.4 Two-Stage OTA Design 4.3 Low-Voltage Low-Power sigma-delta ADC Design 4.3.1 Impact of Circuit Nonidealities to sigma-delta ADC Performance 4.3.2 Modulator Topology Selection 4.3.3 OTA Topology Selection 4.3.4 Transistor Biasing 4.3.5 Scaling of Integrators 4.4 A 1-V 140-µWsigma-delta modulator in 90-nm CMOS 4.4.1 Building Block Circuits Design 4.4.2 Implementation 4.4.3 Measurement Results 4.5 Measurements on PSRR and Low-Frequency Noise Floor 4.5.1 Introduction of PSRR 4.5.2 PSRR Measurement Setup 4.5.3 PSRR Measurement Results 4.5.4 Measurement on Low-Frequency Noise Floor 4.6 Conclusion 5 Low-Power Low-Voltage sigma-delta ADC Design in Deep-Submicron CMOS: System Level Approach 5.1 Introduction 5.2 The Full Feedforward sigma-delta ADC Topology 5.2.1 Single-Loop Single-Bit Full Feedforward sigma-delta Modulators 5.2.2 Single-Loop Multibit Full Feedforward sigma-delta Modulators 5.2.3 Cascaded Full Feedforward sigma-delta Modulators 5.3 Linearity Analysis of sigma-delta ADC 5.3.1 Non-LinearitiesModeling in sigma-delta ADC 5.3.2 Non-Linear OTA Gain Modeling in sigma-delta ADC 5.3.3 Linearity Performance Comparison 5.4 Circuit Implementation of the Full Feedforward sigma-delta Modulator 5.5 A 1.8-V 2-MS/s sigma-delta Modulator in 0.18-µm CMOS 5.5.1 Implementation 5.5.2 Measurement results 5.6 A 1-V 1-MS/s sigma-delta Modulator in 0.13-µm CMOS 5.6.1 Implementation 5.6.2 Measurement Results 5.7 Multibit Full Feedforward sigma-delta Modulator Design 5.7.1 Optimized Loop Coefficients 5.7.2 Circuit Implementation 5.8 Conclusion 6 Flash ADC Design in Deep-Submicron CMOS 6.1 Introduction 6.2 Mismatch Study in Deep-Submicron CMOS Technologies 6.2.1 Mismatch of Components

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Circuits and Systems.