Skip to main content
  • Book
  • © 2013

The Human Respiratory System

An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics

  • Relates the ideas of fractal structure and fractal dimension to the dynamical pattern of breathing
  • A significant step forward in modelling, identification and evaluation of the respiratory system in healthy and breathing-impaired subjects
  • Packed with patient-based data offering real-world validation of the ideas described
  • Includes supplementary material: sn.pub/extras

Part of the book series: Series in BioEngineering (SERBIOENG)

Buy it now

Buying options

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (10 chapters)

  1. Front Matter

    Pages I-XXV
  2. Introduction

    • Clara Mihaela Ionescu
    Pages 1-11
  3. The Human Respiratory System

    • Clara Mihaela Ionescu
    Pages 13-22
  4. The Respiratory Impedance

    • Clara Mihaela Ionescu
    Pages 23-37
  5. Time Domain: Breathing Dynamics and Fractal Dimension

    • Clara Mihaela Ionescu
    Pages 139-167
  6. Non-linear Effects in the Respiratory Impedance

    • Clara Mihaela Ionescu
    Pages 169-196
  7. Conclusions

    • Clara Mihaela Ionescu
    Pages 197-199
  8. Back Matter

    Pages 201-217

About this book

The Human Respiratory System combines emerging ideas from biology and mathematics to show the reader how to produce models for the development of biomedical engineering applications associated with the lungs and airways. Mathematically mature but in its infancy as far as engineering uses are concerned, fractional calculus is the basis of the methods chosen for system analysis and modelling. This reflects two decades’ worth of conceptual development which is now suitable for bringing to bear in biomedical engineering.

The text reveals the latest trends in modelling and identification of human respiratory parameters with a view to developing diagnosis and monitoring technologies. Of special interest is the notion of fractal structure which is indicative of the large-scale biological efficiency of the pulmonary system. The related idea of fractal dimension represents the adaptations in fractal structure caused by environmental factors, notably including disease. These basics are linked to model the dynamical patterns of breathing as a whole.

The ideas presented in the book are validated using real data generated from healthy subjects and respiratory patients and rest on non-invasive measurement methods.

The Human Respiratory System will be of interest to applied mathematicians studying the modelling of biological systems, to clinicians with interests outside the traditional borders of medicine, and to engineers working with technologies of either direct medical significance or for mitigating changes in the respiratory system caused by, for example, high-altitude or deep-sea environments.

Authors and Affiliations

  • Department of Electrical Energy, Systems and Automation, Ghent University, Gent, Belgium

    Clara Mihaela Ionescu

About the author

Clara Ionescu received her MSc in industrial informatics and automation for “Dunarea de Jos” University in Galati, Romania in 2003. The subject of her study being modelling of the respiratory system by means of forced oscillations. She obtained her PhD from Ghent University in 2009 studying the identification of the human respiratory system using fractional-order models. Currently she is a post-doctoral fellow of the Flanders Scientific Research Centre. She has eight years’ expertise in modelling and control of biomedical systems (respiratory control, control of artificial muscles, glucose-level regulation for Type I diabetes, automated control of anaesthesia). She has around 150 peer-reviewed publications in journals, conferences and book chapters and is actively involved in the promotion of the concept of fractality in biological systems and its application in medicine.

Bibliographic Information

Buy it now

Buying options

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access