Logo - springer
Slogan - springer

Education & Language - Linguistics | Advances in Probabilistic and Other Parsing Technologies

Advances in Probabilistic and Other Parsing Technologies

Bunt, H., Nijholt, Anton (Eds.)

2000, XV, 267 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-94-015-9470-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-0-7923-6616-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-90-481-5579-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

Parsing technology is concerned with finding syntactic structure in language. In parsing we have to deal with incomplete and not necessarily accurate formal descriptions of natural languages. Robustness and efficiency are among the main issuesin parsing. Corpora can be used to obtain frequency information about language use. This allows probabilistic parsing, an approach that aims at both robustness and efficiency increase. Approximation techniques, to be applied at the level of language description, parsing strategy, and syntactic representation, have the same objective. Approximation at the level of syntactic representation is also known as underspecification, a traditional technique to deal with syntactic ambiguity.
In this book new parsing technologies are collected that aim at attacking the problems of robustness and efficiency by exactly these techniques: the design of probabilistic grammars and efficient probabilistic parsing algorithms, approximation techniques applied to grammars and parsers to increase parsing efficiency, and techniques for underspecification and the integration of semantic information in the syntactic analysis to deal with massive ambiguity.
The book gives a state-of-the-art overview of current research and development in parsing technologies. In its chapters we see how probabilistic methods have entered the toolbox of computational linguistics in order to be applied in both parsing theory and parsing practice. The book is both a unique reference for researchers and an introduction to the field for interested graduate students.

Content Level » Research

Keywords » Index - Parsing - algorithms - computational linguistics - grammar - linguistics - syntactic

Related subjects » Artificial Intelligence - HCI - Linguistics

Table of contents 

List of Figures. List of Tables. Acknowledgements. 1. New Parsing Technologies; H. Bunt, A. Nijholt. 2. Encoding Frequency Information in Lexicalized Grammars; J. Carroll, D. Weir. 3. Bilexical Grammars and Their Cubic-Time Parsing Algorithms; J. Eisner. 4. Probabilistic Feature Grammars; J. Goodman. 5. Probabilistic GLR Parsing; K. Inui, et al. 6. Probabilistic Parsing Using Left Corner Language Models; C. Manning, B. Carpenter. 7. A New Parsing Method Using a Global Association Table; J. Yoon, et al. 8. Towards a Reduced Commitment, D-Theory Style TAG Parser; J. Chen, K. Vijay-Shanker. 9. Probabilistic Parse Selection Based on Semantic Co-occurrences; E. Hektoen. 10. Message-Passing Protocols for Object-Oriented Parsing; U. Hahn, et al. 11. SuperTagging for Partial Parsing. 12. Regular Approximation of CFLs: A Grammatical View; M.-J. Nederhof. 13. Parsing By Successive Approximation; H. Schmid. Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computational Linguistics.