Logo - springer
Slogan - springer

Earth Sciences & Geography - Geophysics & Geodesy | Volcano Deformation - New Geodetic Monitoring Techniques

Volcano Deformation

New Geodetic Monitoring Techniques

Dzurisin, Daniel

Jointly published with Praxis Publishing, UK

2006, XXXV, 441p. 30 illus.. With online files/update.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$279.00

(net) price for USA

ISBN 978-3-540-49302-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$359.00

(net) price for USA

ISBN 978-3-540-42642-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Volcanic Deformation is the first book devoted to volcano geodesy, a specialisation of the still-young science of volcanology. It forms a part of the whole catalogue of methods used to monitor a restless or an erupting volcano, and demonstrates how risk from hazardous eruptions can be reduced.

With contributions from some of the most experienced and knowledgeable experts in the field, the book desbribes the state-of-the-art techniques used by volcanologists to successfully predict volcanic eruptions. With chapters on GPS and synthetic aperture radar interferometry, Volcanic Deformation covers both the "classical" and emerging methodologies, and looks at the future challenges faced by scientists when predicting volcanic eruptions.

Volcanic Deformation

  • is an up-to-date, comprehensive treatment of volcanic geodesy and its applications;
  • describes how volcanic geodesy complements other volcano monitoring approaches and tools;
  • gives an extensive treatment of the key lessons volcanologists have learned at well-monitored deforming volcanoes.

 

Content Level » Research

Keywords » global positioning system (GPS) - monitoring - radar principles - seismology - synthetic aperture radar interferometry

Related subjects » Geophysics & Geodesy

Table of contents 

1 The modern volcanologist’s tool kit.- 1.1 Volcanoes in motion — when deformation gets extreme.- 1.1.1 The ups and downs of a Roman market — Phlegraean Fields Caldera, Italy.- 1.1.2 Remarkable uplifts in the Galápagos Islands — Fernandina and Alcedo Volcanoes.- 1.1.3 Rabaul Caldera, Papua New Guinea, 1994.- 1.1.4 The bulge at Mount St. Helens, 1980.- 1.2 Volcanology in the information age.- 1.2.1 Volcano hazards mitigation — a complicated business.- 1.2.2 Lessons from Armero, Colombia.- 1.2.3 Communication — a key to effective hazards mitigation.- 1.3 A brief survey of volcano-monitoring techniques.- 1.3.1 Seismology ~ cornerstone of volcano monitoring.- 1.3.2 Volcano geochemistry.- 1.3.3 Volcano geophysics.- 1.3.4 Hydrologic responses to stress and strain.- 1.3.5 Remote-sensing techniques.- 1.3.6 Volcano hazards and risk assessment techniques.- 1.3.7 A mobile volcano-monitoring system.- 1.4 An introduction to geodetic sensors and techniques.- 1.4.1 The emergence of volcano geodesy.- 1.4.2 Continuous sensors and repeat surveys.- 1.4.3 Tiltmeters, strainmeters, and continuous GPS.- 1.4.4 Repeated surveys — leveling, FDM, and GPS.- 1.4.5 Photography, photogrammetry, and water-level gauging.- 2 Classical surveying techniques.- 2.1 Early geodetic surveys.- 2.2 Reference systems and datums.- 2.3 Geodetic networks.- 2.4 Trilateration and triangulation.- 2.4.1 FDM and theodolite surveys, with examples from Mount St. Helens and Long Valley Caldera.- 2.4.2 Triangulation and total-station surveys.- 2.5 Leveling and tilt-leveling surveys.- 2.5.1 Field procedures and accuracy.- 2.5.2 Single-setup leveling.- 2.5.3 Geodetic leveling.- 2.5.4 Tilt-leveling results at South Sister Volcano, Oregon.- 2.5.5 Repeated leveling surveys at Medicine Lake Volcano, California.- 2.6 Photogrammetry.- 2.6.1 Mapping the 1980 north flank ‘bulge’ at Mount St. Helens.- 2.6.2 Oblique-angle and fixed-camera photogrammetry.- 2.7 Microgravity surveys.- 2.7.1 Physical principles.- 2.7.2 Results from Kflauea Volcano, Hawai’i.- 2.7.3 Results from Miyakejima Volcano, Japan.- 2.8 Magnetic field measurements.- 2.8.1 Physical mechanisms.- 2.8.2 Changes associated with eruptions at Mount St. Helens.- 2.8.3 Results from Long Valley Caldera.- 3 Continuous monitoring with in situ sensors.- 3.1 Seismometers.- 3.1.1 A brief history of seismology.- 3.1.2 An introduction to seismic waves and earthquake types.- 3.1.3 Basic principles of seismometers.- 3.1.4 Current research topics in volcano seismology.- 3.2 Tiltmeters.- 3.2.1 Short-base bubble tiltmeters.- 3.2.2 The Ideal-Aero smith mercury capacitance tiltmeter.- 3.2.3 Long-base fluid tiltmeters.- 3.3 Strainmeters.- 3.3.1 Linear strainmeters (extensometers).- 3.3.2 The Sacks-Evertson volumetric strainmeter.- 3.3.3 The Gladwin tensor strainmeter.- 3.4 Continuous GPS.- 3.5 Some cautions about near-surface deformation sensors.- 3.6 Continuous gravimeters.- 3.6.1 Absolute gravimeters.- 3.6.2 Relative gravimeters — the magic of zero-length springs and superconductivity.- 3.6.3 Gravity results from selected volcanoes.- 3.7 Differential lake gauging.- 3.7.1 Monitoring active deformation at Lake Taupo, New Zealand.- 3.7.2 Lake terraces as paleo-tiltmeters.- 3.8 Concluding remarks.- 4 The Global Positioning System: A multipurpose tool.- 4.1 Global positioning principles.- 4.1.1 Reference surfaces and coordinate systems: the geoid and ellipsoid.- 4.1.2 Point positioning and relative positioning.- 4.2 An overview of GPS, GLONASS, and Galileo.- 4.2.1 Who controls GPS?.- 4.2.2 NAVSTAR satellite constellation.- 4.2.3 GLONASS satellite constellation.- 4.2.4 Galileo Global Navigation Satellite System.- 4.3 GPS signal structure: what do the satellites broadcast?.- 4.3.1 L1 and L2 carrier signals, C/A-code, P-code, and Y-code.- 4.3.2 Selective availability and anti-spoofing.- 4.3.3 Navigation message.- 4.4 Observables: what do GPS receivers measure?.- 4.4.1 Code pseudoranges.- 4.4.2 Carrier phase and carrier-beat phase.- 4.5 Data combinations and differences.- 4.5.1 Wide-lane and narrow-lane combinations.- 4.5.2 The L3 combination.- 4.5.3 Single differences.- 4.5.4 Double differences.- 4.5.5 Triple differences.- 4.6 Doing the math: turning data into positions.- 4.6.1 Point positioning with code pseudoranges.- 4.6.2 Point positioning with carrier-beat phases.- 4.6.3 Static relative positioning.- 4.6.4 Kinematic relative positioning.- 4.6.5 Ambiguity resolution.- 4.7 Relative positioning techniques.- 4.7.1 Static GPS.- 4.7.2 Stop-and-go kinematic GPS.- 4.7.3 Kinematic GPS.- 4.7.4 Pseudokinematic GPS.- 4.7.5 Rapid static GPS.- 4.7.6 Real time kinematic OTF GPS.- 4.7.7 Which type of GPS receiver and field procedures are right for the job?.- 4.8 CGPS networks.- 4.8.1 GEONET The national GPS network of Japan.- 4.8.2 The US Continuously Operating Reference Station (CORS) network.- 4.8.3 SCIGN The Southern California Integrated GPS Network.- 4.8.4 PANGA — The Pacific Northwest Geodetic Array.- 4.8.5 The discovery of slow earthquakes in the Pacific Northwest.- 4.8.6 Tracking deformation events at K?lauea Volcano, Hawai’i, with CGPS.- 4.8.7 Continuous, real time GPS network at the Long Valley Caldera.- 4.9 Data processing.- 4.9.1 GPS software packages.- 4.9.2 Precise point positioning.- 4.10 Looking to the future.- 4.10.1 Lightweight, low-power GPS receivers.- 4.10.2 Automated GPS data processing.- 4.10.3 EarthScope and the PBO.- 5 Interferometric synthetic-aperture radar (InSAR).- 5.1 Radar principles and techniques.- 5.1.1 Real-aperture imaging radar systems.- 5.1.2 Ground resolution of real-aperture imaging radars.- 5.1.3 Synthetic-aperture radar.- 5.1.4 Characteristics of SAR images.- 5.2 Principles of SAR interferometry.- 5.2.1 Co-registration of overlapping radar images.- 5.2.2 Creating the interferogram.- 5.2.3 Removing the effects of viewing geometry and topography.- 5.2.4 Two-pass, three-pass, and four-pass interferometry 17.- 5.2.5 DEMs derived from InSAR.- 5.2.6 Lidar, InSAR, and photo gramme try — a potent remote-sensing triad.- 5.2.7 Range-change resolution of InSAR.- 5.2.8 Coping with decorrelation and atmospheric-delay anomalies.- 5.2.9 Volcano InSAR studies: a growing list of success stories.- 5.3 Examples of interferometric SAR applied to volcanoes.- 5.3.1 Mount Etna.- 5.3.2 Long Valley Caldera, California.- 5.3.3 Yellowstone Caldera, Wyoming.- 5.3.4 Akutan Volcano, Alaska.- 5.3.5 Westdahl Volcano, Alaska.- 5.3.6 Three Sisters volcanic center, Oregon.- 5.3.7 The future of volcano InSAR.- 6 Photogrammetry.- 6.1 Introduction.- 6.2 Historical perspective.- 6.3 Photogrammetry fundamentals.- 6.3.1 Introduction.- 6.3.2 Aerial cameras.- 6.3.3 Format, focal length, and field of view.- 6.3.4 Photo collection and scale.- 6.3.5 Relief displacemen t.- 6.3.6 Orientation.- 6.3.7 Photogrammetric accuracy.- 6.4 Instrumentation and data types.- 6.4.1 Analog stereoplotters.- 6.4.2 Analytical stereoplotters.- 6.4.3 Softcopy stereoplotters.- 6.4.4 Display systems.- 6.4.5 Computer-assisted orientation.- 6.4.6 Digital elevation models.- 6.4.7 Orthophotos.- 6.4.8 Satellite imagery.- 6.5 Aerotriangulation.- 6.6 Terrestrial photogrammetry.- 6.7 Application to Mount St. Helens.- 7 Lessons from deforming volcanoes.- 7.1 Mount St. Helens — edifice instability and dome growth.- 7.1.1 Precursory activity: the north flank ‘bulge’.- 7.1.2 Monitoring and predicting the growth of a lava dome.- 7.2 K?lauea volcano, Hawai’i — flank instability and gigantic landslides.- 7.2.1 The volcano’s mobile south flank: historical activity.- 7.2.2 Colossal prehistoric landslides and sea waves.- 7.3 Yellowstone — the ups and downs of a restless caldera.- 7.3.1 Tectonic setting and eruptive history.- 7.3.2 Results of repeated leveling surveys.- 7.3.3 What happened between leveling surveys?.- 7.3.4 Causes of uplift and subsidence.- 7.3.5 Spatiotemporal changes in deformation revealed by InSAR.- 7.4 Long Valley Caldera and the Mono-Inyo volcanic chain: two decades of unrest (and still counting?).- 7.4.1 Eruptive history and recent unrest.- 7.4.2 Leveling results: tracking caldera inflation in space and time.- 7.4.3 Regional and intracaldera trilateration surveys.- 7.4.4 Repeated and continuous GPS measurements.- 7.4.5 Temporal gravity changes.- 7.4.6 Borehole strainmeter and long-base tiltmeter results: implications of triggered seismicity.- 7.4.7 Water-level changes induced by distant earthquakes: evidence for stimulated upward movement of magma or hydrothermal fluid.- 7.4.8 Long Valley summary.- 8 Analytical volcano deformation source models.- 8.1 Introduction.- 8.2 The elastic half-space: a first approximation of the Earth.- 8.2.1 Properties of an isotropic linearly elastic solid.- 8.2.2 Elastic constants.- 8.3 Notation.- 8.3.1 Coordinate system and displacements.- 8.3.2 Stress and strain.- 8.3.3 Tilt.- 8.4 Surface loads.- 8.4.1 Deformation from point, uniform disk, and uniform rectangular surface loads.- 8.5 Point forces, pipes, and spheroidal pressure sources.- 8.5.1 Spheroidal cavities and pipes: model elements for inflating and deflating magma chambers and vertical conduits.- 8.5.2 Point pressure source.- 8.5.3 Finite spherical pressure source.- 8.5.4 Closed pipe: a model for a plugged conduit or a cigar-shaped magma chamber.- 8.5.5 Closed pipe tilt and strain components.- 8.5.6 Open pipe: a composite model for the filling of an open conduit.- 8.5.7 Sill-like magma chambers.- 8.6 Dipping point and finite rectangular tension cracks.- 8.7 Gravity change.- 8.8 Relationship between subsurface and surface volume changes.- 8.9 Topographic corrections to modeled deformation.- 8.9.1 Reference elevation model.- 8.9.2 Varying depth model.- 8.9.3 Topographically corrected model.- 8.10 Inversion of source parameters from deformation data.- 8.10.1 Non-linear inversion and model parameter error estimates.- 8.10.2 Choosing the best source model.- 9 Borehole observations of continuous strain and fluid pressure.- 9.1 Borehole strainmeter design and capabilities.- 9.2 Groundwater level as a volumetric strain indicator.- 9.2.1 Water levels and crustal strain.- 9.2.2 Effects of groundwater flow.- 9.2.3 Thermal pressurization.- 9.2.4 Data collection requirements.- 9.3 Processing and analyzing continuous strain and water level data.- 9.4 Volumetric strain fields of idealized volcanic sources.- 9.4.1 Center of dilatation.- 9.4.2 Vertical conduit models.- 9.4.3 Dike intrusion.- 9.5 Examples.- 9.5.1 Izu Peninsula, Japan.- 9.5.2 Long Valley Caldera, California: stimulation by distant earthquakes.- 9.5.3 Eruptions of Hekla, Iceland, in 1991 and 2000.- 9.5.4 Eruption of Usu Volcano, Japan, March 2000.- 9.5.5 Spreading of the western Pacific sea floor on the Juan de Fuca Ridge.- 9.6 Summary.- 10 Hydrothermal systems and volcano geochemistry.- 10.1 The hydrologic importance of brittle-plastic phenomena.- 10.2 The brittle-plastic transition.- 10.2.1 General considerations.- 10.2.2 Brittle-plastic transition in an active volcanic environment.- 10.2.3 Brittle behavior of normally plastic rock at high strain rates.- 10.3 Development of plastic rock around shallow intrusive bodies.- 10.4 Storage of hydrothermal fluid in and movement through plastic rock.- 10.4.1 Accumulation in horizontal lenses in plastic rock when and where ?3 = Sv.- 10.4.2 Significance of accumulation of fluid in plastic rock at near lithostatic Pf.- 10.4.3 Rapid upward movement of fluid through plastic rock when ?3 < Sv.- 10.5 Self-sealing at the brittle-plastic interface.- 10.6 Mechanisms for breaching the self-sealed zone and discharge of >400°C fluid into cooler rock.- 10.7 Chemical characteristics of fluids in a sub-volcanic environment.- 10.7.1 Salinity variations and phase relations of aqueous fluids at >400°C.- 10.7.2 Generation and behavior of HCl at high temperature and low Pf.- 10.7.3 Behavior of H2S and SO2 in sub-volcanic hydrothermal systems.- 10.7.4 Decompression of the ‘steam’ phase.- 10.8 A general model of hydrothermal activity in a sub-volcanic environment.- 10.9 Uplift and subsidence of large silicic calderas.- 10.10 Conclusions.- 11 Challenges and opportunities for the 21st century.- 11.1 The intrusion process: a complicated business.- 11.2 Strengths and weaknesses of geodetic monitoring.- 11.3 Why is volcano deformation such an elusive target?.- 11.3.1 This should be easy!.- 11.3.2 Lessons from Mount St. Helens I: 1980.- 11.3.3 Lessons from Yellowstone.- 11.3.4 Lessons from Mount St. Helens II: 2004–2006 (continuing education).- 11.4 Capturing volcano deformation in space and time.- 11.4.1 Real-time, global surveillance: an achievable goal.- 11.4.2 On-the-fly volcano modeling.- 11.4.3 Implications for eruption forecasting and hazards mitigation.- 11.5 Pie-in-the-sky volcanology.- 11.6 A bright and challenging future.- References.- DVD with figures and supplementary material.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Geophysics / Geodesy.